Shortcuts

除了训练/测试脚本外,MMAction2 还在 tools/ 目录下提供了许多有用的工具。

目录

日志分析

输入变量指定一个训练日志文件,可通过 tools/analysis/analyze_logs.py 脚本绘制 loss/top-k 曲线。本功能依赖于 seaborn,使用前请先通过 pip install seaborn 安装依赖包。

准确度曲线图

python tools/analysis/analyze_logs.py plot_curve ${JSON_LOGS} [--keys ${KEYS}] [--title ${TITLE}] [--legend ${LEGEND}] [--backend ${BACKEND}] [--style ${STYLE}] [--out ${OUT_FILE}]

例如:

  • 绘制某日志文件对应的分类损失曲线图。

    python tools/analysis/analyze_logs.py plot_curve log.json --keys loss_cls --legend loss_cls
    
  • 绘制某日志文件对应的 top-1 和 top-5 准确率曲线图,并将曲线图导出为 PDF 文件。

    python tools/analysis/analyze_logs.py plot_curve log.json --keys top1_acc top5_acc --out results.pdf
    
  • 在同一图像内绘制两份日志文件对应的 top-1 准确率曲线图。

    python tools/analysis/analyze_logs.py plot_curve log1.json log2.json --keys top1_acc --legend run1 run2
    

    用户还可以通过本工具计算平均训练速度。

    python tools/analysis/analyze_logs.py cal_train_time ${JSON_LOGS} [--include-outliers]
    
  • 计算某日志文件对应的平均训练速度。

    python tools/analysis/analyze_logs.py cal_train_time work_dirs/some_exp/20200422_153324.log.json
    

    预计输出结果如下所示:

    -----Analyze train time of work_dirs/some_exp/20200422_153324.log.json-----
    slowest epoch 60, average time is 0.9736
    fastest epoch 18, average time is 0.9001
    time std over epochs is 0.0177
    average iter time: 0.9330 s/iter
    

模型复杂度分析

/tools/analysis/get_flops.py 是根据 flops-counter.pytorch 库改编的脚本,用于计算输入变量指定模型的 FLOPs 和参数量。

python tools/analysis/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]

预计输出结果如下所示:

==============================
Input shape: (1, 3, 32, 340, 256)
Flops: 37.1 GMac
Params: 28.04 M
==============================

注意:该工具仍处于试验阶段,不保证该数字绝对正确。 用户可以将结果用于简单比较,但若要在技术报告或论文中采用该结果,请仔细检查。

(1) FLOPs 与输入变量形状有关,但是模型的参数量与输入变量形状无关。2D 行为识别器的默认形状为 (1, 3, 340, 256),3D 行为识别器的默认形状为 (1, 3, 32, 340, 256)。 (2) 部分算子不参与 FLOPs 以及参数量的计算,如 GN 和一些自定义算子。更多详细信息请参考 mmcv.cnn.get_model_complexity_info()

模型转换

导出 MMAction2 模型为 ONNX 格式(实验特性)

/tools/deployment/pytorch2onnx.py 脚本用于将模型转换为 ONNX 格式。 同时,该脚本支持比较 PyTorch 模型和 ONNX 模型的输出结果,验证输出结果是否相同。 本功能依赖于 onnx 以及 onnxruntime,使用前请先通过 pip install onnx onnxruntime 安装依赖包。 请注意,可通过 --softmax 选项在行为识别器末尾添加 Softmax 层,从而获取 [0, 1] 范围内的预测结果。

  • 对于行为识别模型,请运行:

    python tools/deployment/pytorch2onnx.py $CONFIG_PATH $CHECKPOINT_PATH --shape $SHAPE --verify
    
  • 对于时序动作检测模型,请运行:

    python tools/deployment/pytorch2onnx.py $CONFIG_PATH $CHECKPOINT_PATH --is-localizer --shape $SHAPE --verify
    

发布模型

tools/deployment/publish_model.py 脚本用于进行模型发布前的准备工作,主要包括:

(1) 将模型的权重张量转化为 CPU 张量。 (2) 删除优化器状态信息。 (3) 计算模型权重文件的哈希值,并将哈希值添加到文件名后。

python tools/deployment/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}

例如,

python tools/deployment/publish_model.py work_dirs/tsn_r50_1x1x3_100e_kinetics400_rgb/latest.pth tsn_r50_1x1x3_100e_kinetics400_rgb.pth

最终,输出文件名为 tsn_r50_1x1x3_100e_kinetics400_rgb-{hash id}.pth

其他脚本

指标评价

tools/analysis/eval_metric.py 脚本通过输入变量指定配置文件,以及对应的结果存储文件,计算某一评价指标。

结果存储文件通过 tools/test.py 脚本(通过参数 --out ${RESULT_FILE} 指定)生成,保存了指定模型在指定数据集中的预测结果。

python tools/analysis/eval_metric.py ${CONFIG_FILE} ${RESULT_FILE} [--eval ${EVAL_METRICS}] [--cfg-options ${CFG_OPTIONS}] [--eval-options ${EVAL_OPTIONS}]

打印完整配置

tools/analysis/print_config.py 脚本会解析所有输入变量,并打印完整配置信息。

python tools/print_config.py ${CONFIG} [-h] [--options ${OPTIONS [OPTIONS...]}]

检查视频

tools/analysis/check_videos.py 脚本利用指定视频编码器,遍历指定配置文件视频数据集中所有样本,寻找无效视频文件(文件破损或者文件不存在),并将无效文件路径保存到输出文件中。请注意,删除无效视频文件后,需要重新生成视频文件列表。

python tools/analysis/check_videos.py ${CONFIG} [-h] [--options OPTIONS [OPTIONS ...]] [--cfg-options CFG_OPTIONS [CFG_OPTIONS ...]] [--output-file OUTPUT_FILE] [--split SPLIT] [--decoder DECODER] [--num-processes NUM_PROCESSES] [--remove-corrupted-videos]
Read the Docs v: latest
Versions
latest
stable
1.x
v1.0.0rc1
dev-1.x
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.