Shortcuts

Source code for mmaction.models.localizers.bmn

# Copyright (c) OpenMMLab. All rights reserved.
import math

import numpy as np
import torch
import torch.nn as nn
from mmengine.model import BaseModel

from mmaction.registry import MODELS
from .utils import post_processing, temporal_iop, temporal_iou


[docs]@MODELS.register_module() class BMN(BaseModel): """Boundary Matching Network for temporal action proposal generation. Please refer `BMN: Boundary-Matching Network for Temporal Action Proposal Generation <https://arxiv.org/abs/1907.09702>`_. Code Reference https://github.com/JJBOY/BMN-Boundary-Matching-Network Args: temporal_dim (int): Total frames selected for each video. boundary_ratio (float): Ratio for determining video boundaries. num_samples (int): Number of samples for each proposal. num_samples_per_bin (int): Number of bin samples for each sample. feat_dim (int): Feature dimension. soft_nms_alpha (float): Soft NMS alpha. soft_nms_low_threshold (float): Soft NMS low threshold. soft_nms_high_threshold (float): Soft NMS high threshold. post_process_top_k (int): Top k proposals in post process. feature_extraction_interval (int): Interval used in feature extraction. Default: 16. loss_cls (dict): Config for building loss. Default: ``dict(type='BMNLoss')``. hidden_dim_1d (int): Hidden dim for 1d conv. Default: 256. hidden_dim_2d (int): Hidden dim for 2d conv. Default: 128. hidden_dim_3d (int): Hidden dim for 3d conv. Default: 512. """ def __init__(self, temporal_dim, boundary_ratio, num_samples, num_samples_per_bin, feat_dim, soft_nms_alpha, soft_nms_low_threshold, soft_nms_high_threshold, post_process_top_k, feature_extraction_interval=16, loss_cls=dict(type='BMNLoss'), hidden_dim_1d=256, hidden_dim_2d=128, hidden_dim_3d=512): super().__init__() self.tscale = temporal_dim self.boundary_ratio = boundary_ratio self.num_samples = num_samples self.num_samples_per_bin = num_samples_per_bin self.feat_dim = feat_dim self.soft_nms_alpha = soft_nms_alpha self.soft_nms_low_threshold = soft_nms_low_threshold self.soft_nms_high_threshold = soft_nms_high_threshold self.post_process_top_k = post_process_top_k self.feature_extraction_interval = feature_extraction_interval self.loss_cls = MODELS.build(loss_cls) self.hidden_dim_1d = hidden_dim_1d self.hidden_dim_2d = hidden_dim_2d self.hidden_dim_3d = hidden_dim_3d self._get_interp1d_mask() # Base Module self.x_1d_b = nn.Sequential( nn.Conv1d( self.feat_dim, self.hidden_dim_1d, kernel_size=3, padding=1, groups=4), nn.ReLU(inplace=True), nn.Conv1d( self.hidden_dim_1d, self.hidden_dim_1d, kernel_size=3, padding=1, groups=4), nn.ReLU(inplace=True)) # Temporal Evaluation Module self.x_1d_s = nn.Sequential( nn.Conv1d( self.hidden_dim_1d, self.hidden_dim_1d, kernel_size=3, padding=1, groups=4), nn.ReLU(inplace=True), nn.Conv1d(self.hidden_dim_1d, 1, kernel_size=1), nn.Sigmoid()) self.x_1d_e = nn.Sequential( nn.Conv1d( self.hidden_dim_1d, self.hidden_dim_1d, kernel_size=3, padding=1, groups=4), nn.ReLU(inplace=True), nn.Conv1d(self.hidden_dim_1d, 1, kernel_size=1), nn.Sigmoid()) # Proposal Evaluation Module self.x_1d_p = nn.Sequential( nn.Conv1d( self.hidden_dim_1d, self.hidden_dim_1d, kernel_size=3, padding=1), nn.ReLU(inplace=True)) self.x_3d_p = nn.Sequential( nn.Conv3d( self.hidden_dim_1d, self.hidden_dim_3d, kernel_size=(self.num_samples, 1, 1)), nn.ReLU(inplace=True)) self.x_2d_p = nn.Sequential( nn.Conv2d(self.hidden_dim_3d, self.hidden_dim_2d, kernel_size=1), nn.ReLU(inplace=True), nn.Conv2d( self.hidden_dim_2d, self.hidden_dim_2d, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d( self.hidden_dim_2d, self.hidden_dim_2d, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(self.hidden_dim_2d, 2, kernel_size=1), nn.Sigmoid()) self.anchors_tmins, self.anchors_tmaxs = self._temporal_anchors( -0.5, 1.5) self.match_map = self._match_map() # self.bm_mask = self._get_bm_mask() self.register_buffer('bm_mask', self._get_bm_mask())
[docs] def init_weights(self) -> None: """Initiate the parameters from scratch.""" pass
[docs] def forward(self, inputs, data_samples, mode, **kwargs): """The unified entry for a forward process in both training and test. The method should accept three modes: - ``tensor``: Forward the whole network and return tensor or tuple of tensor without any post-processing, same as a common nn.Module. - ``predict``: Forward and return the predictions, which are fully processed to a list of :obj:`ActionDataSample`. - ``loss``: Forward and return a dict of losses according to the given inputs and data samples. Note that this method doesn't handle neither back propagation nor optimizer updating, which are done in the :meth:`train_step`. Args: inputs (Tensor): The input tensor with shape (N, C, ...) in general. data_samples (List[:obj:`ActionDataSample`], optional): The annotation data of every samples. Defaults to None. mode (str): Return what kind of value. Defaults to ``tensor``. Returns: The return type depends on ``mode``. - If ``mode="tensor"``, return a tensor or a tuple of tensor. - If ``mode="predict"``, return a list of ``ActionDataSample``. - If ``mode="loss"``, return a dict of tensor. """ inputs = torch.stack(inputs) if mode == 'tensor': return self._forward(inputs, **kwargs) if mode == 'predict': return self.predict(inputs, data_samples, **kwargs) elif mode == 'loss': return self.loss(inputs, data_samples, **kwargs) else: raise RuntimeError(f'Invalid mode "{mode}". ' 'Only supports loss, predict and tensor mode')
[docs] def loss(self, batch_inputs, batch_data_samples, **kwargs): """Calculate losses from a batch of inputs and data samples. Args: batch_inputs (Tensor): Raw Inputs of the recognizer. These should usually be mean centered and std scaled. batch_data_samples (List[:obj:`ActionDataSample`]): The batch data samples. It usually includes information such as ``gt_labels``. Returns: dict: A dictionary of loss components. """ gt_bbox = [ sample.gt_instances['gt_bbox'] for sample in batch_data_samples ] label_confidence, label_start, label_end = self.generate_labels( gt_bbox) device = batch_inputs.device label_confidence = label_confidence.to(device) label_start = label_start.to(device) label_end = label_end.to(device) confidence_map, start, end = self._forward(batch_inputs) loss = self.loss_cls(confidence_map, start, end, label_confidence, label_start, label_end, self.bm_mask) loss_dict = dict(loss=loss[0]) return loss_dict
[docs] def predict(self, batch_inputs, batch_data_samples, **kwargs): """Define the computation performed at every call when testing.""" confidence_map, start, end = self._forward(batch_inputs) start_scores = start[0].cpu().numpy() end_scores = end[0].cpu().numpy() cls_confidence = (confidence_map[0][1]).cpu().numpy() reg_confidence = (confidence_map[0][0]).cpu().numpy() max_start = max(start_scores) max_end = max(end_scores) # generate the set of start points and end points start_bins = np.zeros(len(start_scores)) start_bins[0] = 1 # [1,0,0...,0,0] end_bins = np.zeros(len(end_scores)) end_bins[-1] = 1 # [0,0,0...,0,1] for idx in range(1, self.tscale - 1): if start_scores[idx] > start_scores[ idx + 1] and start_scores[idx] > start_scores[idx - 1]: start_bins[idx] = 1 elif start_scores[idx] > (0.5 * max_start): start_bins[idx] = 1 if end_scores[idx] > end_scores[ idx + 1] and end_scores[idx] > end_scores[idx - 1]: end_bins[idx] = 1 elif end_scores[idx] > (0.5 * max_end): end_bins[idx] = 1 # iterate through all combinations of start_index and end_index new_proposals = [] for idx in range(self.tscale): for jdx in range(self.tscale): start_index = jdx end_index = start_index + idx + 1 if end_index < self.tscale and start_bins[ start_index] == 1 and end_bins[end_index] == 1: tmin = start_index / self.tscale tmax = end_index / self.tscale tmin_score = start_scores[start_index] tmax_score = end_scores[end_index] cls_score = cls_confidence[idx, jdx] reg_score = reg_confidence[idx, jdx] score = tmin_score * tmax_score * cls_score * reg_score new_proposals.append([ tmin, tmax, tmin_score, tmax_score, cls_score, reg_score, score ]) new_proposals = np.stack(new_proposals) video_info = batch_data_samples[0].metainfo proposal_list = post_processing(new_proposals, video_info, self.soft_nms_alpha, self.soft_nms_low_threshold, self.soft_nms_high_threshold, self.post_process_top_k, self.feature_extraction_interval) output = [ dict( video_name=video_info['video_name'], proposal_list=proposal_list) ] return output
@staticmethod def _get_interp1d_bin_mask(seg_tmin, seg_tmax, tscale, num_samples, num_samples_per_bin): """Generate sample mask for a boundary-matching pair.""" plen = float(seg_tmax - seg_tmin) plen_sample = plen / (num_samples * num_samples_per_bin - 1.0) total_samples = [ seg_tmin + plen_sample * i for i in range(num_samples * num_samples_per_bin) ] p_mask = [] for idx in range(num_samples): bin_samples = total_samples[idx * num_samples_per_bin:(idx + 1) * num_samples_per_bin] bin_vector = np.zeros(tscale) for sample in bin_samples: sample_upper = math.ceil(sample) sample_decimal, sample_down = math.modf(sample) if 0 <= int(sample_down) <= (tscale - 1): bin_vector[int(sample_down)] += 1 - sample_decimal if 0 <= int(sample_upper) <= (tscale - 1): bin_vector[int(sample_upper)] += sample_decimal bin_vector = 1.0 / num_samples_per_bin * bin_vector p_mask.append(bin_vector) p_mask = np.stack(p_mask, axis=1) return p_mask def _get_interp1d_mask(self): """Generate sample mask for each point in Boundary-Matching Map.""" mask_mat = [] for start_index in range(self.tscale): mask_mat_vector = [] for duration_index in range(self.tscale): if start_index + duration_index < self.tscale: p_tmin = start_index p_tmax = start_index + duration_index center_len = float(p_tmax - p_tmin) + 1 sample_tmin = p_tmin - (center_len * self.boundary_ratio) sample_tmax = p_tmax + (center_len * self.boundary_ratio) p_mask = self._get_interp1d_bin_mask( sample_tmin, sample_tmax, self.tscale, self.num_samples, self.num_samples_per_bin) else: p_mask = np.zeros([self.tscale, self.num_samples]) mask_mat_vector.append(p_mask) mask_mat_vector = np.stack(mask_mat_vector, axis=2) mask_mat.append(mask_mat_vector) mask_mat = np.stack(mask_mat, axis=3) mask_mat = mask_mat.astype(np.float32) self.sample_mask = nn.Parameter( torch.tensor(mask_mat).view(self.tscale, -1), requires_grad=False) def _get_bm_mask(self): """Generate Boundary-Matching Mask.""" bm_mask = [] for idx in range(self.tscale): mask_vector = [1] * (self.tscale - idx) + [0] * idx bm_mask.append(mask_vector) bm_mask = torch.tensor(bm_mask, dtype=torch.float) return bm_mask def _match_map(self): """Generate match map.""" temporal_gap = 1. / self.tscale match_map = [] for idx in range(self.tscale): match_window = [] tmin = temporal_gap * idx for jdx in range(1, self.tscale + 1): tmax = tmin + temporal_gap * jdx match_window.append([tmin, tmax]) match_map.append(match_window) match_map = np.array(match_map) match_map = np.transpose(match_map, [1, 0, 2]) match_map = np.reshape(match_map, [-1, 2]) return match_map def _temporal_anchors(self, tmin_offset=0., tmax_offset=1.): """Generate temporal anchors. Args: tmin_offset (int): Offset for the minimum value of temporal anchor. Default: 0. tmax_offset (int): Offset for the maximum value of temporal anchor. Default: 1. Returns: tuple[Sequence[float]]: The minimum and maximum values of temporal anchors. """ temporal_gap = 1. / self.tscale anchors_tmins = [] anchors_tmaxs = [] for i in range(self.tscale): anchors_tmins.append(temporal_gap * (i + tmin_offset)) anchors_tmaxs.append(temporal_gap * (i + tmax_offset)) return anchors_tmins, anchors_tmaxs def _forward(self, x): """Define the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module. """ # x.shape [batch_size, self.feat_dim, self.tscale] base_feature = self.x_1d_b(x) # base_feature.shape [batch_size, self.hidden_dim_1d, self.tscale] start = self.x_1d_s(base_feature).squeeze(1) # start.shape [batch_size, self.tscale] end = self.x_1d_e(base_feature).squeeze(1) # end.shape [batch_size, self.tscale] confidence_map = self.x_1d_p(base_feature) # [batch_size, self.hidden_dim_1d, self.tscale] confidence_map = self._boundary_matching_layer(confidence_map) # [batch_size, self.hidden_dim_1d,, self.num_sampls, self.tscale, self.tscale] # noqa confidence_map = self.x_3d_p(confidence_map).squeeze(2) # [batch_size, self.hidden_dim_3d, self.tscale, self.tscale] confidence_map = self.x_2d_p(confidence_map) # [batch_size, 2, self.tscale, self.tscale] return confidence_map, start, end def _boundary_matching_layer(self, x): """Generate matching layer.""" input_size = x.size() out = torch.matmul(x, self.sample_mask).reshape(input_size[0], input_size[1], self.num_samples, self.tscale, self.tscale) return out
[docs] def generate_labels(self, gt_bbox): """Generate training labels.""" # TODO: do this without numpy match_score_confidence_list = [] match_score_start_list = [] match_score_end_list = [] for every_gt_bbox in gt_bbox: gt_iou_map = [] every_gt_bbox = every_gt_bbox.cpu() for start, end in every_gt_bbox: if isinstance(start, torch.Tensor): start = start.numpy() if isinstance(end, torch.Tensor): end = end.numpy() current_gt_iou_map = temporal_iou(self.match_map[:, 0], self.match_map[:, 1], start, end) current_gt_iou_map = np.reshape(current_gt_iou_map, [self.tscale, self.tscale]) gt_iou_map.append(current_gt_iou_map) gt_iou_map = np.array(gt_iou_map).astype(np.float32) gt_iou_map = np.max(gt_iou_map, axis=0) gt_tmins = every_gt_bbox[:, 0] gt_tmaxs = every_gt_bbox[:, 1] gt_len_pad = 3 * (1. / self.tscale) gt_start_bboxs = np.stack( (gt_tmins - gt_len_pad / 2, gt_tmins + gt_len_pad / 2), axis=1) gt_end_bboxs = np.stack( (gt_tmaxs - gt_len_pad / 2, gt_tmaxs + gt_len_pad / 2), axis=1) match_score_start = [] match_score_end = [] for anchor_tmin, anchor_tmax in zip(self.anchors_tmins, self.anchors_tmaxs): match_score_start.append( np.max( temporal_iop(anchor_tmin, anchor_tmax, gt_start_bboxs[:, 0], gt_start_bboxs[:, 1]))) match_score_end.append( np.max( temporal_iop(anchor_tmin, anchor_tmax, gt_end_bboxs[:, 0], gt_end_bboxs[:, 1]))) match_score_confidence_list.append(gt_iou_map) match_score_start_list.append(match_score_start) match_score_end_list.append(match_score_end) def to_tensor(x): return torch.Tensor(np.array(x)) match_score_confidence_list = to_tensor(match_score_confidence_list) match_score_start_list = to_tensor(match_score_start_list) match_score_end_list = to_tensor(match_score_end_list) return (match_score_confidence_list, match_score_start_list, match_score_end_list)
Read the Docs v: latest
Versions
latest
stable
1.x
0.x
dev-1.x
Downloads
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.