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Overview


What is MMAction2

MMAction2 is an open source toolkit based on PyTorch, supporting numerous video understanding models, including action recognition, skeleton-based action recognition, spatio-temporal action detection and temporal action localization. Moreover, it supports widely-used academic datasets and offers many useful tools, assisting users in exploring various aspects of models and datasets, as well as implementing high-quality algorithms. Generally, the toolkit boasts the following features:

One-stop, Multi-model: MMAction2 supports various video understanding tasks and implements state-of-the-art models for action recognition, localization, detection.

Modular Design: The modular design of MMAction2 enables users to define and reuse modules in the model as required.

Various Useful Tools: MMAction2 provides an array of analysis tools, such as visualizers, validation scripts, evaluators, etc., to aid users in troubleshooting, fine-tuning, or comparing models.

Powered by OpenMMLab: Similar to other algorithm libraries in the OpenMMLab family, MMAction2 adheres to OpenMMLab’s rigorous development guidelines and interface conventions, considerably reducing the learning cost for users familiar with other OpenMMLab projects. Furthermore, due to the unified interfaces among OpenMMLab projects, it is easy to call models implemented in other OpenMMLab projects (such as MMClassification) in MMAction2, which greatly facilitates cross-domain research and real-world applications.
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Installation


Prerequisites

In this section we demonstrate how to prepare an environment with PyTorch.

MMAction2 works on Linux, Windows and macOS. It requires Python 3.7+, CUDA 10.2+ and PyTorch 1.8+.


Note

If you are experienced with PyTorch and have already installed it, just skip this part and jump to the next section. Otherwise, you can follow these steps for the preparation.



Step 1. Download and install Miniconda from the official website [https://docs.conda.io/en/latest/miniconda.html].

Step 2. Create a conda environment and activate it.

conda create --name openmmlab python=3.8 -y
conda activate openmmlab





Step 3. Install PyTorch following official instructions [https://pytorch.org/get-started/locally/], e.g.

On GPU platforms:

conda install pytorch torchvision -c pytorch






Warning

This command will automatically install the latest version PyTorch and cudatoolkit, please check whether they match your environment.



On CPU platforms:

conda install pytorch torchvision cpuonly -c pytorch







Best Practices

We recommend that users follow our best practices to install MMAction2. However, the whole process is highly customizable. See Customize Installation section for more information.

Step 1. Install MMEngine [https://github.com/open-mmlab/mmengine], MMCV [https://github.com/open-mmlab/mmcv], MMDetection [https://github.com/open-mmlab/mmdetection] (optional) and MMPose [https://github.com/open-mmlab/mmpose] (optional) using MIM [https://github.com/open-mmlab/mim].

pip install -U openmim
mim install mmengine
mim install mmcv
mim install mmdet
mim install mmpose





Step 2. Install MMAction2.

According to your needs, we support two install modes:


	Install from source (Recommended): You want to develop your own action recognition task or new features on MMAction2 framework. For example, adding new dataset or new models. Thus, you can use all tools we provided.


	Install as a Python package: You just want to call MMAction2’s APIs or import MMAction2’s modules in your project.





Build MMAction2 from source

In this case, install mmaction2 from source:

git clone https://github.com/open-mmlab/mmaction2.git
cd mmaction2
pip install -v -e .
# "-v" means verbose, or more output
# "-e" means installing a project in editable mode,
# thus any local modifications made to the code will take effect without re-installation.





Optionally, if you want to contribute to MMAction2 or experience experimental functions, please checkout to the dev-1.x branch:

git checkout dev-1.x







Install as a Python package

Just install with pip.

pip install mmaction2








Verify the installation

To verify whether MMAction2 is installed correctly, we provide some sample codes to run an inference demo.

Step 1. Download the config and checkpoint files.

mim download mmaction2 --config tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb --dest .





Step 2. Verify the inference demo.

Option (a). If you install mmaction2 from source, you can run the following command:

# The demo.mp4 and label_map_k400.txt are both from Kinetics-400
python demo/demo.py tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb.py \
    tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb_20220906-2692d16c.pth \
    demo/demo.mp4 tools/data/kinetics/label_map_k400.txt





You will see the top-5 labels with corresponding scores in your terminal.

Option (b). If you install mmaction2 as a python package, you can run the following codes in your python interpreter, which will do the similar verification:

from operator import itemgetter
from mmaction.apis import init_recognizer, inference_recognizer

config_file = 'tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb.py'
checkpoint_file = 'tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb_20220906-2692d16c.pth'
video_file = 'demo/demo.mp4'
label_file = 'tools/data/kinetics/label_map_k400.txt'
model = init_recognizer(config_file, checkpoint_file, device='cpu')  # or device='cuda:0'
pred_result = inference_recognizer(model, video_file)

pred_scores = pred_result.pred_score.tolist()
score_tuples = tuple(zip(range(len(pred_scores)), pred_scores))
score_sorted = sorted(score_tuples, key=itemgetter(1), reverse=True)
top5_label = score_sorted[:5]

labels = open(label_file).readlines()
labels = [x.strip() for x in labels]
results = [(labels[k[0]], k[1]) for k in top5_label]

print('The top-5 labels with corresponding scores are:')
for result in results:
    print(f'{result[0]}: ', result[1])







Customize Installation


CUDA versions

When installing PyTorch, you may need to specify the version of CUDA. If you are
not clear on which to choose, follow our recommendations:


	For Ampere-based NVIDIA GPUs, such as GeForce 30 series and NVIDIA A100, CUDA 11 is a must.


	For older NVIDIA GPUs, CUDA 11 is backward compatible, but CUDA 10.2 offers better compatibility and is more lightweight.




Please make sure the GPU driver satisfies the minimum version requirements. See this table [https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions] for more information.


Note

Installing CUDA runtime libraries is enough if you follow our best practices,
because no CUDA code will be compiled locally. However if you hope to compile
MMCV from source or develop other CUDA operators, you need to install the
complete CUDA toolkit from NVIDIA’s website [https://developer.nvidia.com/cuda-downloads],
and its version should match the CUDA version of PyTorch. i.e., the specified
version of cudatoolkit in conda install command.





Install MMCV without MIM

MMCV contains C++ and CUDA extensions, so it depends on PyTorch in a complex
way. MIM solves such dependencies automatically and makes the installation
easier. However, it is not a must.

To install MMCV with pip instead of MIM, please follow
MMCV installation guides [https://mmcv.readthedocs.io/en/latest/get_started/installation.html].
This requires manually specifying a find-url based on PyTorch version and its CUDA version.

For example, the following command install mmcv built for PyTorch 1.10.x and CUDA 11.3.

pip install mmcv -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html







Install on CPU-only platforms

MMAction2 can be built for CPU-only environment. In CPU mode you can train, test or inference a model.

Some functionalities are gone in this mode, usually GPU-compiled ops. But don’t
worry, almost all models in MMAction2 don’t depend on these ops.



Using MMAction2 with Docker

We provide a Dockerfile [https://github.com/open-mmlab/mmaction2/blob/main/docker/Dockerfile]
to build an image. Ensure that your docker version [https://docs.docker.com/engine/install/] >=19.03.

# build an image with PyTorch 1.8.1, CUDA 10.2, CUDNN 7.
# If you prefer other versions, just modified the Dockerfile
docker build -f ./docker/Dockerfile --rm -t mmaction2 .





Run it with

docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmaction2/data mmaction2








Troubleshooting


	When migrating from the old version 0.x to the new version 1.x, you may encounter issues with mismatched versions of dependent libraries. Below is a display of the versions of each dependent library after following the aforementioned installation process, as shown by pip list command. Please ensure that the versions of each dependent library displayed in your terminal are greater than or equal to (i.e., >=) the versions shown below for each dependent library.




mmaction2                1.0.0
mmcv                     2.0.0
mmdet                    3.0.0
mmengine                 0.7.2
mmpose                   1.0.0
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Quick Run

This chapter will introduce you to the fundamental functionalities of MMAction2. We assume that you have installed MMAction2 from source.


	Quick Run


	Inference


	Prepare a Dataset


	Modify the Config


	Modify Dataset


	Modify Runtime Config


	Modify Model Config






	Browse the Dataset


	Training


	Testing









Inference

Run the following command in the root directory of MMAction2:

python demo/demo_inferencer.py  demo/demo.mp4 \
    --rec tsn --print-result \
    --label-file tools/data/kinetics/label_map_k400.txt





You should be able to see a pop-up video and the inference result printed out in the console.


    




# Inference result
{'predictions': [{'rec_labels': [[6]], 'rec_scores': [[...]]}]}






Note

If you are running MMAction2 on a server without a GUI or via an SSH tunnel with X11 forwarding disabled, you may not see the pop-up window.



A detailed description of MMAction2’s inference interface can be found here [https://github.com/open-mmlab/mmaction2/tree/main/demo/README.md#inferencer].

In addition to using our well-provided pre-trained models, you can also train models on your own datasets. In the next section, we will take you through the basic functions of MMAction2 by training TSN on the tiny Kinetics [https://download.openmmlab.com/mmaction/kinetics400_tiny.zip] dataset as an example.



Prepare a Dataset

Since the variety of video dataset formats are not conducive to switching datasets, MMAction2 proposes a uniform data format, and provides dataset preparer for commonly used video datasets. Usually, to use those datasets in MMAction2, you just need to follow the steps to get them ready for use.


Note

But here, efficiency means everything.



To get started, please download our pre-prepared kinetics400_tiny.zip [https://download.openmmlab.com/mmaction/kinetics400_tiny.zip] and extract it to the data/ directory in the root directory of MMAction2. This will provide you with the necessary videos and annotation file.

wget https://download.openmmlab.com/mmaction/kinetics400_tiny.zip
mkdir -p data/
unzip kinetics400_tiny.zip -d data/







Modify the Config

After preparing the dataset, the next step is to modify the config file to specify the location of the training set and training parameters.

In this example, we will train a TSN using resnet50 as its backbone. Since MMAction2 already has a config file for the full Kinetics400 dataset (configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py), we just need to make some modifications on top of it.


Modify Dataset

We first need to modify the path to the dataset. Open configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py and replace keys as followed:

data_root = 'data/kinetics400_tiny/train'
data_root_val = 'data/kinetics400_tiny/val'
ann_file_train = 'data/kinetics400_tiny/kinetics_tiny_train_video.txt'
ann_file_val = 'data/kinetics400_tiny/kinetics_tiny_val_video.txt'







Modify Runtime Config

Additionally, due to the reduced size of the dataset, we recommend decreasing the training batch size to 4 and the number of training epochs to 10 accordingly. Furthermore, we suggest shortening the validation and weight storage intervals to 1 round each, and modifying the learning rate decay strategy. Modify the corresponding keys in  configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py as following lines to take effect.

# set training batch size to 4
train_dataloader['batch_size'] = 4

# Save checkpoints every epoch, and only keep the latest checkpoint
default_hooks = dict(
    checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=1))
# Set the maximum number of epochs to 10, and validate the model every 1 epochs
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=10, val_interval=1)
# adjust learning rate schedule according to 10 epochs
param_scheduler = [
    dict(
        type='MultiStepLR',
        begin=0,
        end=10,
        by_epoch=True,
        milestones=[4, 8],
        gamma=0.1)
]







Modify Model Config

Further, due to the small size of tiny Kinetics dataset, it is recommended to load a pre-trained model on the original Kinetics dataset. Additionally, the model needs to be modified according to the actual number of classes. Please directly add the following lines to configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py.

model = dict(
    cls_head=dict(num_classes=2))
load_from = 'https://download.openmmlab.com/mmaction/v1.0/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb_20220906-cd10898e.pth'





Here, we have rewritten the corresponding parameters in the base configuration directly through the inheritance () mechanism of the config. The original fields are distributed in configs/_base_/models/tsn_r50.py, configs/_base_/schedules/sgd_100e.py and configs/_base_/default_runtime.py.


Note

For a more detailed description of config, please refer to here.






Browse the Dataset

Before we start the training, we can also visualize the frames processed by training-time data transforms. It’s quite simple: pass the config file we need to visualize into the browse_dataset.py [https://github.com/open-mmlab/mmaction2/tree/main/tools/analysis_tools/browse_dataset.py] script.

python tools/visualizations/browse_dataset.py \
    configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py \
    browse_out --mode pipeline





The transformed videos will be saved to browse_out folder.


    


Note

For details on the parameters and usage of this script, please refer to here.




Tip

In addition to satisfying our curiosity, visualization can also help us check the parts that may affect the model’s performance before training, such as problems in configs, datasets and data transforms.



we can further visualize the learning rate schedule to make sure that the config is as expected by following script:

python tools/visualizations/vis_scheduler.py configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py





The training learning rate schedule will be displayed in a pop-up window.


    


Note

The learning rate is auto scaled according to the actual batchsize.





Training

Start the training by running the following command:

python tools/train.py configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py





Depending on the system environment, MMAction2 will automatically use the best device for training. If a GPU is available, a single GPU training will be started by default. When you start to see the output of the losses, you have successfully started the training.

03/24 16:36:15 - mmengine - INFO - Exp name: tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb_20230324_163608
03/24 16:36:15 - mmengine - INFO - Epoch(train)  [1][8/8]  lr: 1.5625e-04  eta: 0:00:15  time: 0.2151  data_time: 0.0845  memory: 1314  grad_norm: 8.5647  loss: 0.7267  top1_acc: 0.0000  top5_acc: 1.0000  loss_cls: 0.7267
03/24 16:36:16 - mmengine - INFO - Exp name: tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb_20230324_163608
03/24 16:36:16 - mmengine - INFO - Epoch(train)  [2][8/8]  lr: 1.5625e-04  eta: 0:00:12  time: 0.1979  data_time: 0.0717  memory: 1314  grad_norm: 8.4709  loss: 0.7130  top1_acc: 0.0000  top5_acc: 1.0000  loss_cls: 0.7130
03/24 16:36:18 - mmengine - INFO - Exp name: tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb_20230324_163608
03/24 16:36:18 - mmengine - INFO - Epoch(train)  [3][8/8]  lr: 1.5625e-04  eta: 0:00:10  time: 0.1691  data_time: 0.0478  memory: 1314  grad_norm: 8.2910  loss: 0.6900  top1_acc: 0.5000  top5_acc: 1.0000  loss_cls: 0.6900
03/24 16:36:18 - mmengine - INFO - Saving checkpoint at 3 epochs
03/24 16:36:19 - mmengine - INFO - Epoch(val) [3][1/1]  acc/top1: 0.9000  acc/top5: 1.0000  acc/mean1: 0.9000data_time: 1.2716  time: 1.3658
03/24 16:36:20 - mmengine - INFO - The best checkpoint with 0.9000 acc/top1 at 3 epoch is saved to best_acc/top1_epoch_3.pth.





Without extra configurations, model weights will be saved to work_dirs/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb/, while the logs will be stored in work_dirs/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb/TIMESTAMP/. Next, we just need to wait with some patience for training to finish.


Note

For advanced usage of training, such as CPU training, multi-GPU training, and cluster training, please refer to Training and Testing.





Testing

After 10 epochs, we observe that TSN performs best in the 6th epoch, with acc/top1 reaching 1.0000:

03/24 16:36:25 - mmengine - INFO - Epoch(val) [6][1/1]  acc/top1: 1.0000  acc/top5: 1.0000  acc/mean1: 1.0000data_time: 1.0210  time: 1.1091






Note

The result is pretty high due to pre-trained on original Kinetics400, you may see a different result.



However, this value only reflects the validation performance of TSN on the mini Kinetics dataset, While test results are usually higher due to more augmentation in test pipeline.

Start testing:

python tools/test.py configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py \
    work_dirs/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb/best_acc/top1_epoch_6.pth





And get the outputs like:

03/24 17:00:59 - mmengine - INFO - Epoch(test) [10/10]  acc/top1: 1.0000  acc/top5: 1.0000  acc/mean1: 0.9000data_time: 0.0420  time: 1.0795





The model achieves an top1-accuracy of 1.0000 on this dataset.


Note

For advanced usage of testing, such as CPU testing, multi-GPU testing, and cluster testing, please refer to Training and Testing.
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A 20-Minute Guide to MMAction2 FrameWork

In this tutorial, we will demonstrate the overall architecture of our MMACTION2 1.0 through a step-by-step example of video action recognition.

The structure of this tutorial is as follows:


	A 20-Minute Guide to MMAction2 FrameWork


	Step0: Prepare Data


	Step1: Build a Pipeline


	Step2: Build a Dataset and DataLoader


	Step3: Build a Recognizer


	Step4: Build a Evaluation Metric


	Step5: Train and Test with Native PyTorch


	Step6: Train and Test with MMEngine (Recommended)








First, we need to initialize the scope for registry, to ensure that each module is registered under the scope of mmaction. For more detailed information about registry, please refer to MMEngine Tutorial [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/registry.html].

from mmaction.utils import register_all_modules

register_all_modules(init_default_scope=True)






Step0: Prepare Data

Please download our self-made kinetics400_tiny [https://download.openmmlab.com/mmaction/kinetics400_tiny.zip] dataset and extract it to the $MMACTION2/data directory.
The directory structure after extraction should be as follows:

mmaction2
├── data
│   ├── kinetics400_tiny
│   │    ├── kinetics_tiny_train_video.txt
│   │    ├── kinetics_tiny_val_video.txt
│   │    ├── train
│   │    │   ├── 27_CSXByd3s.mp4
│   │    │   ├── 34XczvTaRiI.mp4
│   │    │   ├── A-wiliK50Zw.mp4
│   │    │   ├── ...
│   │    └── val
│   │       ├── 0pVGiAU6XEA.mp4
│   │       ├── AQrbRSnRt8M.mp4
│   │       ├── ...





Here are some examples from the annotation file kinetics_tiny_train_video.txt:

D32_1gwq35E.mp4 0
iRuyZSKhHRg.mp4 1
oXy-e_P_cAI.mp4 0
34XczvTaRiI.mp4 1
h2YqqUhnR34.mp4 0





Each line in the file represents the annotation of a video, where the first item denotes the video filename (e.g., D32_1gwq35E.mp4), and the second item represents the corresponding label (e.g., label 0 for D32_1gwq35E.mp4). In this dataset, there are only two categories.



Step1: Build a Pipeline

In order to decode, sample, resize, crop, format, and pack the input video and corresponding annotation, we need to design a pipeline to handle these processes. Specifically, we design seven Transform classes to build this video processing pipeline. Note that all Transform classes in OpenMMLab must inherit from the BaseTransform class in mmcv, implement the abstract method transform, and be registered to the TRANSFORMS registry. For more detailed information about data transform, please refer to MMEngine Tutorial [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/data_transform.html].

import mmcv
import decord
import numpy as np
from mmcv.transforms import TRANSFORMS, BaseTransform, to_tensor
from mmaction.structures import ActionDataSample


@TRANSFORMS.register_module()
class VideoInit(BaseTransform):
    def transform(self, results):
        container = decord.VideoReader(results['filename'])
        results['total_frames'] = len(container)
        results['video_reader'] = container
        return results


@TRANSFORMS.register_module()
class VideoSample(BaseTransform):
    def __init__(self, clip_len, num_clips, test_mode=False):
        self.clip_len = clip_len
        self.num_clips = num_clips
        self.test_mode = test_mode

    def transform(self, results):
        total_frames = results['total_frames']
        interval = total_frames // self.clip_len

        if self.test_mode:
            # Make the sampling during testing deterministic
            np.random.seed(42)

        inds_of_all_clips = []
        for i in range(self.num_clips):
            bids = np.arange(self.clip_len) * interval
            offset = np.random.randint(interval, size=bids.shape)
            inds = bids + offset
            inds_of_all_clips.append(inds)

        results['frame_inds'] = np.concatenate(inds_of_all_clips)
        results['clip_len'] = self.clip_len
        results['num_clips'] = self.num_clips
        return results


@TRANSFORMS.register_module()
class VideoDecode(BaseTransform):
    def transform(self, results):
        frame_inds = results['frame_inds']
        container = results['video_reader']

        imgs = container.get_batch(frame_inds).asnumpy()
        imgs = list(imgs)

        results['video_reader'] = None
        del container

        results['imgs'] = imgs
        results['img_shape'] = imgs[0].shape[:2]
        return results


@TRANSFORMS.register_module()
class VideoResize(BaseTransform):
    def __init__(self, r_size):
        self.r_size = (np.inf, r_size)

    def transform(self, results):
        img_h, img_w = results['img_shape']
        new_w, new_h = mmcv.rescale_size((img_w, img_h), self.r_size)

        imgs = [mmcv.imresize(img, (new_w, new_h))
                for img in results['imgs']]
        results['imgs'] = imgs
        results['img_shape'] = imgs[0].shape[:2]
        return results


@TRANSFORMS.register_module()
class VideoCrop(BaseTransform):
    def __init__(self, c_size):
        self.c_size = c_size

    def transform(self, results):
        img_h, img_w = results['img_shape']
        center_x, center_y = img_w // 2, img_h // 2
        x1, x2 = center_x - self.c_size // 2, center_x + self.c_size // 2
        y1, y2 = center_y - self.c_size // 2, center_y + self.c_size // 2
        imgs = [img[y1:y2, x1:x2] for img in results['imgs']]
        results['imgs'] = imgs
        results['img_shape'] = imgs[0].shape[:2]
        return results


@TRANSFORMS.register_module()
class VideoFormat(BaseTransform):
    def transform(self, results):
        num_clips = results['num_clips']
        clip_len = results['clip_len']
        imgs = results['imgs']

        # [num_clips*clip_len, H, W, C]
        imgs = np.array(imgs)
        # [num_clips, clip_len, H, W, C]
        imgs = imgs.reshape((num_clips, clip_len) + imgs.shape[1:])
        # [num_clips, C, clip_len, H, W]
        imgs = imgs.transpose(0, 4, 1, 2, 3)

        results['imgs'] = imgs
        return results


@TRANSFORMS.register_module()
class VideoPack(BaseTransform):
    def __init__(self, meta_keys=('img_shape', 'num_clips', 'clip_len')):
        self.meta_keys = meta_keys

    def transform(self, results):
        packed_results = dict()
        inputs = to_tensor(results['imgs'])
        data_sample = ActionDataSample()
        data_sample.set_gt_label(results['label'])
        metainfo = {k: results[k] for k in self.meta_keys if k in results}
        data_sample.set_metainfo(metainfo)
        packed_results['inputs'] = inputs
        packed_results['data_samples'] = data_sample
        return packed_results





Below, we provide a code snippet (using D32_1gwq35E.mp4 0 from the annotation file) to demonstrate how to use the pipeline.

import os.path as osp
from mmengine.dataset import Compose

pipeline_cfg = [
    dict(type='VideoInit'),
    dict(type='VideoSample', clip_len=16, num_clips=1, test_mode=False),
    dict(type='VideoDecode'),
    dict(type='VideoResize', r_size=256),
    dict(type='VideoCrop', c_size=224),
    dict(type='VideoFormat'),
    dict(type='VideoPack')
]

pipeline = Compose(pipeline_cfg)
data_prefix = 'data/kinetics400_tiny/train'
results = dict(filename=osp.join(data_prefix, 'D32_1gwq35E.mp4'), label=0)
packed_results = pipeline(results)

inputs = packed_results['inputs']
data_sample = packed_results['data_samples']

print('shape of the inputs: ', inputs.shape)

# Get metainfo of the inputs
print('image_shape: ', data_sample.img_shape)
print('num_clips: ', data_sample.num_clips)
print('clip_len: ', data_sample.clip_len)

# Get label of the inputs
print('label: ', data_sample.gt_label)





shape of the inputs:  torch.Size([1, 3, 16, 224, 224])
image_shape:  (224, 224)
num_clips:  1
clip_len:  16
label:  tensor([0])







Step2: Build a Dataset and DataLoader

All Dataset classes in OpenMMLab must inherit from the BaseDataset class in mmengine. We can customize annotation loading process by overriding the load_data_list method. Additionally, we can add more information to the results dict that is passed as input to the pipeline by overriding the get_data_info method. For more detailed information about BaseDataset class, please refer to MMEngine Tutorial [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/basedataset.html].

import os.path as osp
from mmengine.fileio import list_from_file
from mmengine.dataset import BaseDataset
from mmaction.registry import DATASETS


@DATASETS.register_module()
class DatasetZelda(BaseDataset):
    def __init__(self, ann_file, pipeline, data_root, data_prefix=dict(video=''),
                 test_mode=False, modality='RGB', **kwargs):
        self.modality = modality
        super(DatasetZelda, self).__init__(ann_file=ann_file, pipeline=pipeline, data_root=data_root,
                                           data_prefix=data_prefix, test_mode=test_mode,
                                           **kwargs)

    def load_data_list(self):
        data_list = []
        fin = list_from_file(self.ann_file)
        for line in fin:
            line_split = line.strip().split()
            filename, label = line_split
            label = int(label)
            filename = osp.join(self.data_prefix['video'], filename)
            data_list.append(dict(filename=filename, label=label))
        return data_list

    def get_data_info(self, idx: int) -> dict:
        data_info = super().get_data_info(idx)
        data_info['modality'] = self.modality
        return data_info





Next, we will demonstrate how to use dataset and dataloader to index data. We will use the Runner.build_dataloader method to construct the dataloader. For more detailed information about dataloader, please refer to MMEngine Tutorial [https://mmengine.readthedocs.io/en/latest/tutorials/dataset.html#details-on-dataloader].

from mmaction.registry import DATASETS

train_pipeline_cfg = [
    dict(type='VideoInit'),
    dict(type='VideoSample', clip_len=16, num_clips=1, test_mode=False),
    dict(type='VideoDecode'),
    dict(type='VideoResize', r_size=256),
    dict(type='VideoCrop', c_size=224),
    dict(type='VideoFormat'),
    dict(type='VideoPack')
]

val_pipeline_cfg = [
    dict(type='VideoInit'),
    dict(type='VideoSample', clip_len=16, num_clips=5, test_mode=True),
    dict(type='VideoDecode'),
    dict(type='VideoResize', r_size=256),
    dict(type='VideoCrop', c_size=224),
    dict(type='VideoFormat'),
    dict(type='VideoPack')
]

train_dataset_cfg = dict(
    type='DatasetZelda',
    ann_file='kinetics_tiny_train_video.txt',
    pipeline=train_pipeline_cfg,
    data_root='data/kinetics400_tiny/',
    data_prefix=dict(video='train'))

val_dataset_cfg = dict(
    type='DatasetZelda',
    ann_file='kinetics_tiny_val_video.txt',
    pipeline=val_pipeline_cfg,
    data_root='data/kinetics400_tiny/',
    data_prefix=dict(video='val'))

train_dataset = DATASETS.build(train_dataset_cfg)

packed_results = train_dataset[0]

inputs = packed_results['inputs']
data_sample = packed_results['data_samples']

print('shape of the inputs: ', inputs.shape)

# Get metainfo of the inputs
print('image_shape: ', data_sample.img_shape)
print('num_clips: ', data_sample.num_clips)
print('clip_len: ', data_sample.clip_len)

# Get label of the inputs
print('label: ', data_sample.gt_label)

from mmengine.runner import Runner

BATCH_SIZE = 2

train_dataloader_cfg = dict(
    batch_size=BATCH_SIZE,
    num_workers=0,
    persistent_workers=False,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=train_dataset_cfg)

val_dataloader_cfg = dict(
    batch_size=BATCH_SIZE,
    num_workers=0,
    persistent_workers=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=val_dataset_cfg)

train_data_loader = Runner.build_dataloader(dataloader=train_dataloader_cfg)
val_data_loader = Runner.build_dataloader(dataloader=val_dataloader_cfg)

batched_packed_results = next(iter(train_data_loader))

batched_inputs = batched_packed_results['inputs']
batched_data_sample = batched_packed_results['data_samples']

assert len(batched_inputs) == BATCH_SIZE
assert len(batched_data_sample) == BATCH_SIZE





The terminal output should be the same as the one shown in the Step1: Build a Pipeline.



Step3: Build a Recognizer

Next, we will construct the recognizer, which mainly consists of three parts: data preprocessor for batching and normalizing the data, backbone for feature extraction, and cls_head for classification.

The implementation of data_preprocessor is as follows:

import torch
from mmengine.model import BaseDataPreprocessor, stack_batch
from mmaction.registry import MODELS


@MODELS.register_module()
class DataPreprocessorZelda(BaseDataPreprocessor):
    def __init__(self, mean, std):
        super().__init__()

        self.register_buffer(
            'mean',
            torch.tensor(mean, dtype=torch.float32).view(-1, 1, 1, 1),
            False)
        self.register_buffer(
            'std',
            torch.tensor(std, dtype=torch.float32).view(-1, 1, 1, 1),
            False)

    def forward(self, data, training=False):
        data = self.cast_data(data)
        inputs = data['inputs']
        batch_inputs = stack_batch(inputs)  # Batching
        batch_inputs = (batch_inputs - self.mean) / self.std  # Normalization
        data['inputs'] = batch_inputs
        return data





Here is the usage of data_preprocessor: feed the batched_packed_results obtained from the Step2: Build a Dataset and DataLoader into the data_preprocessor for batching and normalization.

from mmaction.registry import MODELS

data_preprocessor_cfg = dict(
    type='DataPreprocessorZelda',
    mean=[123.675, 116.28, 103.53],
    std=[58.395, 57.12, 57.375])

data_preprocessor = MODELS.build(data_preprocessor_cfg)

preprocessed_inputs = data_preprocessor(batched_packed_results)
print(preprocessed_inputs['inputs'].shape)





torch.Size([2, 1, 3, 16, 224, 224])





The implementations of backbone, cls_head and recognizer are as follows:

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.model import BaseModel, BaseModule, Sequential
from mmengine.structures import LabelData
from mmaction.registry import MODELS


@MODELS.register_module()
class BackBoneZelda(BaseModule):
    def __init__(self, init_cfg=None):
        if init_cfg is None:
            init_cfg = [dict(type='Kaiming', layer='Conv3d', mode='fan_out', nonlinearity="relu"),
                        dict(type='Constant', layer='BatchNorm3d', val=1, bias=0)]

        super(BackBoneZelda, self).__init__(init_cfg=init_cfg)

        self.conv1 = Sequential(nn.Conv3d(3, 64, kernel_size=(3, 7, 7),
                                          stride=(1, 2, 2), padding=(1, 3, 3)),
                                nn.BatchNorm3d(64), nn.ReLU())
        self.maxpool = nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2),
                                    padding=(0, 1, 1))

        self.conv = Sequential(nn.Conv3d(64, 128, kernel_size=3, stride=2, padding=1),
                               nn.BatchNorm3d(128), nn.ReLU())

    def forward(self, imgs):
        # imgs: [batch_size*num_views, 3, T, H, W]
        # features: [batch_size*num_views, 128, T/2, H//8, W//8]
        features = self.conv(self.maxpool(self.conv1(imgs)))
        return features


@MODELS.register_module()
class ClsHeadZelda(BaseModule):
    def __init__(self, num_classes, in_channels, dropout=0.5, average_clips='prob', init_cfg=None):
        if init_cfg is None:
            init_cfg = dict(type='Normal', layer='Linear', std=0.01)

        super(ClsHeadZelda, self).__init__(init_cfg=init_cfg)

        self.num_classes = num_classes
        self.in_channels = in_channels
        self.average_clips = average_clips

        if dropout != 0:
            self.dropout = nn.Dropout(dropout)
        else:
            self.dropout = None

        self.fc = nn.Linear(self.in_channels, self.num_classes)
        self.pool = nn.AdaptiveAvgPool3d(1)
        self.loss_fn = nn.CrossEntropyLoss()

    def forward(self, x):
        N, C, T, H, W = x.shape
        x = self.pool(x)
        x = x.view(N, C)
        assert x.shape[1] == self.in_channels

        if self.dropout is not None:
            x = self.dropout(x)

        cls_scores = self.fc(x)
        return cls_scores

    def loss(self, feats, data_samples):
        cls_scores = self(feats)
        labels = torch.stack([x.gt_label for x in data_samples])
        labels = labels.squeeze()

        if labels.shape == torch.Size([]):
            labels = labels.unsqueeze(0)

        loss_cls = self.loss_fn(cls_scores, labels)
        return dict(loss_cls=loss_cls)

    def predict(self, feats, data_samples):
        cls_scores = self(feats)
        num_views = cls_scores.shape[0] // len(data_samples)
        # assert num_views == data_samples[0].num_clips
        cls_scores = self.average_clip(cls_scores, num_views)

        for ds, sc in zip(data_samples, cls_scores):
            pred = LabelData(item=sc)
            ds.pred_scores = pred
        return data_samples

    def average_clip(self, cls_scores, num_views):
          if self.average_clips not in ['score', 'prob', None]:
            raise ValueError(f'{self.average_clips} is not supported. '
                             f'Currently supported ones are '
                             f'["score", "prob", None]')

          total_views = cls_scores.shape[0]
          cls_scores = cls_scores.view(total_views // num_views, num_views, -1)

          if self.average_clips is None:
              return cls_scores
          elif self.average_clips == 'prob':
              cls_scores = F.softmax(cls_scores, dim=2).mean(dim=1)
          elif self.average_clips == 'score':
              cls_scores = cls_scores.mean(dim=1)

          return cls_scores


@MODELS.register_module()
class RecognizerZelda(BaseModel):
    def __init__(self, backbone, cls_head, data_preprocessor):
        super().__init__(data_preprocessor=data_preprocessor)

        self.backbone = MODELS.build(backbone)
        self.cls_head = MODELS.build(cls_head)

    def extract_feat(self, inputs):
        inputs = inputs.view((-1, ) + inputs.shape[2:])
        return self.backbone(inputs)

    def loss(self, inputs, data_samples):
        feats = self.extract_feat(inputs)
        loss = self.cls_head.loss(feats, data_samples)
        return loss

    def predict(self, inputs, data_samples):
        feats = self.extract_feat(inputs)
        predictions = self.cls_head.predict(feats, data_samples)
        return predictions

    def forward(self, inputs, data_samples=None, mode='tensor'):
        if mode == 'tensor':
            return self.extract_feat(inputs)
        elif mode == 'loss':
            return self.loss(inputs, data_samples)
        elif mode == 'predict':
            return self.predict(inputs, data_samples)
        else:
            raise RuntimeError(f'Invalid mode: {mode}')





The init_cfg is used for model weight initialization. For more information on model weight initialization, please refer to MMEngine Tutorial [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/initialize.html]. The usage of the above modules is as follows:

import torch
import copy
from mmaction.registry import MODELS

model_cfg = dict(
    type='RecognizerZelda',
    backbone=dict(type='BackBoneZelda'),
    cls_head=dict(
        type='ClsHeadZelda',
        num_classes=2,
        in_channels=128,
        average_clips='prob'),
    data_preprocessor = dict(
        type='DataPreprocessorZelda',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375]))

model = MODELS.build(model_cfg)

# Train
model.train()
model.init_weights()
data_batch_train = copy.deepcopy(batched_packed_results)
data = model.data_preprocessor(data_batch_train, training=True)
loss = model(**data, mode='loss')
print('loss dict: ', loss)

# Test
with torch.no_grad():
    model.eval()
    data_batch_test = copy.deepcopy(batched_packed_results)
    data = model.data_preprocessor(data_batch_test, training=False)
    predictions = model(**data, mode='predict')
print('Label of Sample[0]', predictions[0].gt_label)
print('Scores of Sample[0]', predictions[0].pred_score)





04/03 23:28:01 - mmengine - INFO -
backbone.conv1.0.weight - torch.Size([64, 3, 3, 7, 7]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0

04/03 23:28:01 - mmengine - INFO -
backbone.conv1.0.bias - torch.Size([64]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0

04/03 23:28:01 - mmengine - INFO -
backbone.conv1.1.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of RecognizerZelda

04/03 23:28:01 - mmengine - INFO -
backbone.conv1.1.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of RecognizerZelda

04/03 23:28:01 - mmengine - INFO -
backbone.conv.0.weight - torch.Size([128, 64, 3, 3, 3]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0

04/03 23:28:01 - mmengine - INFO -
backbone.conv.0.bias - torch.Size([128]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0

04/03 23:28:01 - mmengine - INFO -
backbone.conv.1.weight - torch.Size([128]):
The value is the same before and after calling `init_weights` of RecognizerZelda

04/03 23:28:01 - mmengine - INFO -
backbone.conv.1.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of RecognizerZelda

04/03 23:28:01 - mmengine - INFO -
cls_head.fc.weight - torch.Size([2, 128]):
NormalInit: mean=0, std=0.01, bias=0

04/03 23:28:01 - mmengine - INFO -
cls_head.fc.bias - torch.Size([2]):
NormalInit: mean=0, std=0.01, bias=0

loss dict:  {'loss_cls': tensor(0.6853, grad_fn=<NllLossBackward0>)}
Label of Sample[0] tensor([0])
Scores of Sample[0] tensor([0.5240, 0.4760])







Step4: Build a Evaluation Metric

Note that all Metric classes in OpenMMLab must inherit from the BaseMetric class in mmengine and  implement the abstract methods, process and compute_metrics. For more information on evaluation, please refer to MMEngine Tutorial [https://mmengine.readthedocs.io/en/latest/tutorials/evaluation.html].

import copy
from collections import OrderedDict
from mmengine.evaluator import BaseMetric
from mmaction.evaluation import top_k_accuracy
from mmaction.registry import METRICS


@METRICS.register_module()
class AccuracyMetric(BaseMetric):
    def __init__(self, topk=(1, 5), collect_device='cpu', prefix='acc'):
        super().__init__(collect_device=collect_device, prefix=prefix)
        self.topk = topk

    def process(self, data_batch, data_samples):
        data_samples = copy.deepcopy(data_samples)
        for data_sample in data_samples:
            result = dict()
            scores = data_sample['pred_score'].cpu().numpy()
            label = data_sample['gt_label'].item()
            result['scores'] = scores
            result['label'] = label
            self.results.append(result)

    def compute_metrics(self, results: list) -> dict:
        eval_results = OrderedDict()
        labels = [res['label'] for res in results]
        scores = [res['scores'] for res in results]
        topk_acc = top_k_accuracy(scores, labels, self.topk)
        for k, acc in zip(self.topk, topk_acc):
            eval_results[f'topk{k}'] = acc
        return eval_results





from mmaction.registry import METRICS

metric_cfg = dict(type='AccuracyMetric', topk=(1, 5))

metric = METRICS.build(metric_cfg)

data_samples = [d.to_dict() for d in predictions]

metric.process(batched_packed_results, data_samples)
acc = metric.compute_metrics(metric.results)
print(acc)





OrderedDict([('topk1', 0.5), ('topk5', 1.0)])







Step5: Train and Test with Native PyTorch

import torch.optim as optim
from mmengine import track_iter_progress


device = 'cuda' # or 'cpu'
max_epochs = 10

optimizer = optim.Adam(model.parameters(), lr=0.01)

for epoch in range(max_epochs):
    model.train()
    losses = []
    for data_batch in track_iter_progress(train_data_loader):
        data = model.data_preprocessor(data_batch, training=True)
        loss_dict = model(**data, mode='loss')
        loss = loss_dict['loss_cls']

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        losses.append(loss.item())

    print(f'Epoch[{epoch}]: loss ', sum(losses) / len(train_data_loader))

    with torch.no_grad():
        model.eval()
        for data_batch in track_iter_progress(val_data_loader):
            data = model.data_preprocessor(data_batch, training=False)
            predictions = model(**data, mode='predict')
            data_samples = [d.to_dict() for d in predictions]
            metric.process(data_batch, data_samples)

        acc = metric.acc = metric.compute_metrics(metric.results)
        for name, topk in acc.items():
            print(f'{name}: ', topk)







Step6: Train and Test with MMEngine (Recommended)

For more details on training and testing, you can refer to MMAction2 Tutorial [https://mmaction2.readthedocs.io/en/latest/user_guides/train_test.html]. For more information on Runner, please refer to MMEngine Tutorial [https://mmengine.readthedocs.io/en/latest/tutorials/runner.html].

from mmengine.runner import Runner

train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=10, val_interval=1)
val_cfg = dict(type='ValLoop')

optim_wrapper = dict(optimizer=dict(type='Adam', lr=0.01))

runner = Runner(model=model_cfg, work_dir='./work_dirs/guide',
                train_dataloader=train_dataloader_cfg,
                train_cfg=train_cfg,
                val_dataloader=val_dataloader_cfg,
                val_cfg=val_cfg,
                optim_wrapper=optim_wrapper,
                val_evaluator=[metric_cfg],
                default_scope='mmaction')
runner.train()
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How to contribute to MMAction2

All kinds of contributions are welcome, including but not limited to the following.


	Fixes (typo, bugs)


	New features and components


	Add documentation or translate the documentation into other languages


	Add new project (Recommended) about video understanding algorithm with less restriction, refer to here for details





Workflow


	Fork and pull the latest mmaction2


	Checkout a new branch with a meaningful name (do not use main branch for PRs)


	Commit your changes


	Create a PR





Note


	If you plan to add some new features that involve large changes, it is encouraged to open an issue for discussion first.


	If you are the author of some papers and would like to include your method to mmaction2, please contact us. We will much appreciate your contribution.








Code style


Python

We adopt PEP8 [https://www.python.org/dev/peps/pep-0008/] as the preferred code style.

We use the following tools for linting and formatting:


	flake8 [http://flake8.pycqa.org/en/latest/]: linter


	yapf [https://github.com/google/yapf]: formatter


	isort [https://github.com/timothycrosley/isort]: sort imports


	codespell [https://github.com/codespell-project/codespell]: A Python utility to fix common misspellings in text files.


	mdformat [https://github.com/executablebooks/mdformat]: Mdformat is an opinionated Markdown formatter that can be used to enforce a consistent style in Markdown files.


	docformatter [https://github.com/myint/docformatter]: A formatter to format docstring.




Style configurations of yapf and isort can be found in setup.cfg [https://github.com/open-mmlab/mmaction2/blob/main/setup.cfg].

We use pre-commit hook [https://pre-commit.com/] that checks and formats for flake8, yapf, isort, trailing whitespaces, markdown files,
fixes end-of-files, double-quoted-strings, python-encoding-pragma, mixed-line-ending, sorts requirments.txt automatically on every commit.
The config for a pre-commit hook is stored in .pre-commit-config [https://github.com/open-mmlab/mmaction2/blob/main/.pre-commit-config.yaml].

After you clone the repository, you will need to install initialize pre-commit hook.

pip install -U pre-commit





From the repository folder

pre-commit install





After this on every commit check code linters and formatter will be enforced.


Before you create a PR, make sure that your code lints and is formatted by yapf.






C++ and CUDA

We follow the Google C++ Style Guide [https://google.github.io/styleguide/cppguide.html].
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FAQ


Outline

We list some common issues faced by many users and their corresponding solutions here.


	FAQ


	Outline


	Installation


	Data


	Training


	Testing








Feel free to enrich the list if you find any frequent issues and have ways to help others to solve them.
If the contents here do not cover your issue, please create an issue using the provided templates [https://github.com/open-mmlab/mmaction2/tree/main/.github/ISSUE_TEMPLATE/error-report.md] and make sure to fill in all required information in the template.



Installation


	“No module named ‘mmcv.ops’”; “No module named ‘mmcv._ext’”


	Uninstall existing mmcv in the environment using pip uninstall mmcv


	Install mmcv following the installation instruction [https://mmcv.readthedocs.io/en/2.x/get_started/installation.html#install-mmcv]






	“OSError: MoviePy Error: creation of None failed because of the following error”

Refer to install.md [https://github.com/open-mmlab/mmaction2/blob/master/docs/install.md#requirements]


	For Windows users, ImageMagick [https://www.imagemagick.org/script/index.php] will not be automatically detected by MoviePy, there is a need to modify moviepy/config_defaults.py file by providing the path to the ImageMagick binary called magick, like IMAGEMAGICK_BINARY = "C:\\Program Files\\ImageMagick_VERSION\\magick.exe"


	For Linux users, there is a need to modify the /etc/ImageMagick-6/policy.xml file by commenting out <policy domain="path" rights="none" pattern="@*" /> to <!-- <policy domain="path" rights="none" pattern="@*" /> -->, if ImageMagick is not detected by moviepy.






	“Why I got the error message ‘Please install XXCODEBASE to use XXX’ even if I have already installed XXCODEBASE?”

You got that error message because our project failed to import a function or a class from XXCODEBASE. You can try to run the corresponding line to see what happens. One possible reason is, for some codebases in OpenMMLAB, you need to install mmcv and mmengine before you install them. You could follow this tutorial [https://mmaction2.readthedocs.io/en/latest/get_started/installation.html#installation] to install them.







Data


	FileNotFound like No such file or directory: xxx/xxx/img_00300.jpg

In our repo, we set start_index=1 as default value for rawframe dataset, and start_index=0 as default value for video dataset.
If users encounter FileNotFound error for the first or last frame of the data, there is a need to check the files begin with offset 0 or 1,
that is xxx_00000.jpg or xxx_00001.jpg, and then change the start_index value of data pipeline in configs.



	How should we preprocess the videos in the dataset? Resizing them to a fix size(all videos with the same height-width ratio) like 340x256 (1) or resizing them so that the short edges of all videos are of the same length (256px or 320px) (2)

We have tried both preprocessing approaches and found (2) is a better solution in general, so we use (2) with short edge length 256px as the default preprocessing setting. We benchmarked these preprocessing approaches and you may find the results in TSN Data Benchmark [https://github.com/open-mmlab/mmaction2/tree/master/configs/recognition/tsn] and SlowOnly Data Benchmark [https://github.com/open-mmlab/mmaction2/tree/master/configs/recognition/slowonly].



	Mismatched data pipeline items lead to errors like KeyError: 'total_frames'

We have both pipeline for processing videos and frames.

For videos, We should decode them on the fly in the pipeline, so pairs like DecordInit & DecordDecode, OpenCVInit & OpenCVDecode, PyAVInit & PyAVDecode should be used for this case like this example [https://github.com/open-mmlab/mmaction2/blob/main/configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py#L14-L16].

For Frames, the image has been decoded offline, so pipeline item RawFrameDecode should be used for this case like this example [https://github.com/open-mmlab/mmaction2/blob/main/configs/recognition/trn/trn_imagenet-pretrained-r50_8xb16-1x1x8-50e_sthv1-rgb.py#L17].

KeyError: 'total_frames' is caused by incorrectly using RawFrameDecode step for videos, since when the input is a video, it can not get the total_frames beforehand.







Training


	How to just use trained recognizer models for backbone pre-training?

In order to use the pre-trained model for the whole network, the new config adds the link of pre-trained models in the load_from.

And to use backbone for pre-training, you can change pretrained value in the backbone dict of config files to the checkpoint path / url.
When training, the unexpected keys will be ignored.



	How to fix stages of backbone when finetuning a model?

You can refer to def _freeze_stages() [https://github.com/open-mmlab/mmaction2/blob/main/mmaction/models/backbones/resnet3d.py#L791] and frozen_stages [https://github.com/open-mmlab/mmaction2/blob/main/mmaction/models/backbones/resnet3d.py#L369-L370].
Reminding to set find_unused_parameters = True in config files for distributed training or testing.

Actually, users can set frozen_stages to freeze stages in backbones except C3D model, since almost all backbones inheriting from ResNet and ResNet3D support the inner function _freeze_stages().



	How to set memcached setting in config files?

In MMAction2, you can pass memcached kwargs to class DecordInit for video dataset or RawFrameDecode for rawframes dataset.
For more details, you can refer to [class FileClient] in MMEngine for more details.
Here is an example to use memcached for rawframes dataset:

mc_cfg = dict(server_list_cfg='server_list_cfg', client_cfg='client_cfg', sys_path='sys_path')

train_pipeline = [
  ...
  dict(type='RawFrameDecode', io_backend='memcached', **mc_cfg),
  ...
]







	How to set load_from value in config files to finetune models?

In MMAction2, We set load_from=None as default in configs/_base_/default_runtime.py and owing to inheritance design [https://github.com/open-mmlab/mmaction2/tree/main/docs/en/user_guides/config.md],
users can directly change it by setting load_from in their configs.



	How to use RawFrameDataset for training?

In MMAction2 1.x version, most of the configs take VideoDataset as the default dataset type, which is much more friendly to file storage. If you want to use RawFrameDataset instead, there are two steps to modify:


	Dataset:
modify dataset in train_dataloader/val_dataloader/test_dataloader from

dataset=dict(
    type=VideoDataset,
    data_prefix=dict(video=xxx),
    ...)





to

dataset=dict(
    type=RawFrameDataset,
    data_prefix=dict(img=xxx),
    filename_tmpl='{:05}.jpg',
    ...)





remaining fields of dataset don’t need to be modified. Please make sure that filename_tmpl is matching with your frame data, and you can refer to config document for more details about config file.



	Transforms: delete dict(type='DecordInit', **file_client_args), modify dict(type='DecordDecode') to dict(type='RawFrameDecode', **file_client_args) in train_pipeline/val_pipeline/test_pipeline, and please make sure that file_client_args = dict(io_backend='disk') has been defined in your config.




For more modifications about customizing datasets, please refer to prepare dataset and customize dataset.







Testing


	How to make predicted score normalized by softmax within [0, 1]?

change this in the config, make model.cls_head.average_clips = 'prob'.



	What if the model is too large and the GPU memory can not fit even only one testing sample?

By default, the 3d models are tested with 10clips x 3crops, which are 30 views in total. For extremely large models, the GPU memory can not fit even only one testing sample (cuz there are 30 views). To handle this, you can set max_testing_views=n in model['test_cfg'] of the config file. If so, n views will be used as a batch during forwarding to save GPU memory used.
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Inference with existing models

MMAction2 provides pre-trained models for video understanding in Model Zoo.
This note will show how to use existing models to inference on given video.

As for how to test existing models on standard datasets, please see this guide


Inference on a given video

MMAction2 provides high-level Python APIs for inference on a given video:


	init_recognizer: Initialize a recognizer with a config and checkpoint


	inference_recognizer: Inference on a given video




Here is an example of building the model and inference on a given video by using Kinitics-400 pre-trained checkpoint.


Note

If you use mmaction2 as a 3rd-party package, you need to download the conifg and the demo video in the example.

Run ‘mim download mmaction2 –config tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb –dest .’ to download the required config.

Run ‘wget https://github.com/open-mmlab/mmaction2/blob/main/demo/demo.mp4’ to download the desired demo video.



from mmaction.apis import inference_recognizer, init_recognizer

config_path = 'configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb.py'
checkpoint_path = 'https://download.openmmlab.com/mmaction/v1.0/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb/tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb_20220906-2692d16c.pth' # can be a local path
img_path = 'demo/demo.mp4'   # you can specify your own picture path

# build the model from a config file and a checkpoint file
model = init_recognizer(config_path, checkpoint_path, device="cpu")  # device can be 'cuda:0'
# test a single image
result = inference_recognizer(model, img_path)





result is a dictionary containing pred_scores.

An action recognition demo can be found in demo/demo.py [https://github.com/open-mmlab/mmaction2/blob/main/demo/demo.py].





            

          

      

      

    

  

  
    
    

    Learn about Configs
    

    

    

    

    

    
 
  

    
      
          
            
  
Learn about Configs

We use python files as configs, incorporate modular and inheritance design into our config system, which is convenient to conduct various experiments.
You can find all the provided configs under $MMAction2/configs. If you wish to inspect the config file,
you may run python tools/analysis_tools/print_config.py /PATH/TO/CONFIG to see the complete config.



	Learn about Configs


	Modify config through script arguments


	Config File Structure


	Config File Naming Convention


	Config System for Action Recognition


	Config System for Spatio-Temporal Action Detection


	Config System for Action localization














Modify config through script arguments

When submitting jobs using tools/train.py or tools/test.py, you may specify --cfg-options to in-place modify the config.


	Update config keys of dict.

The config options can be specified following the order of the dict keys in the original config.
For example, --cfg-options model.backbone.norm_eval=False changes the all BN modules in model backbones to train mode.



	Update keys inside a list of configs.

Some config dicts are composed as a list in your config. For example, the training pipeline train_pipeline is normally a list
e.g. [dict(type='SampleFrames'), ...]. If you want to change 'SampleFrames' to 'DenseSampleFrames' in the pipeline,
you may specify --cfg-options train_pipeline.0.type=DenseSampleFrames.



	Update values of list/tuples.

If the value to be updated is a list or a tuple. For example, the config file normally sets model.data_preprocessor.mean=[123.675, 116.28, 103.53]. If you want to
change this key, you may specify --cfg-options model.data_preprocessor.mean="[128,128,128]". Note that the quotation mark ” is necessary to support list/tuple data types.







Config File Structure

There are 3 basic component types under configs/_base_, models, schedules, default_runtime.
Many methods could be easily constructed with one of each like TSN, I3D, SlowOnly, etc.
The configs that are composed by components from _base_ are called primitive.

For all configs under the same folder, it is recommended to have only one primitive config. All other configs should inherit from the primitive config. In this way, the maximum of inheritance level is 3.

For easy understanding, we recommend contributors to inherit from exiting methods.
For example, if some modification is made based on TSN, users may first inherit the basic TSN structure by specifying _base_ = ../tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py, then modify the necessary fields in the config files.

If you are building an entirely new method that does not share the structure with any of the existing methods, you may create a folder under configs/TASK.

Please refer to mmengine [https://mmengine.readthedocs.io/en/latest/tutorials/config.html] for detailed documentation.



Config File Naming Convention

We follow the style below to name config files. Contributors are advised to follow the same style. The config file names are divided into several parts. Logically, different parts are concatenated by underscores '_', and settings in the same part are concatenated by dashes '-'.

{algorithm info}_{module info}_{training info}_{data info}.py





{xxx} is required field and [yyy] is optional.


	{algorithm info}:


	{model}: model type, e.g. tsn, i3d, swin, vit, etc.


	[model setting]: specific setting for some models, e.g. base, p16, w877, etc.






	{module info}:


	[pretained info]: pretrained information, e.g. kinetics400-pretrained, in1k-pre, etc.


	{backbone}: backbone type. e.g. r50 (ResNet-50), etc.


	[backbone setting]: specific setting for some backbones, e.g. nl-dot-product, bnfrozen, nopool, etc.






	{training info}:


	{gpu x batch_per_gpu]}: GPUs and samples per GPU.


	{pipeline setting}: frame sample setting, e.g. dense, {clip_len}x{frame_interval}x{num_clips}, u48, etc.


	{schedule}: training schedule, e.g. coslr-20e.






	{data info}:


	{dataset}: dataset name, e.g. kinetics400, mmit, etc.


	{modality}: data modality, e.g. rgb, flow, keypoint-2d, etc.









Config System for Action Recognition

We incorporate modular design into our config system,
which is convenient to conduct various experiments.


	An Example of TSN

To help the users have a basic idea of a complete config structure and the modules in an action recognition system,
we make brief comments on the config of TSN as the following.
For more detailed usage and alternative for per parameter in each module, please refer to the API documentation.

# model settings
model = dict(  # Config of the model
    type='Recognizer2D',  # Class name of the recognizer
    backbone=dict(  # Dict for backbone
        type='ResNet',  # Name of the backbone
        pretrained='torchvision://resnet50',  # The url/site of the pretrained model
        depth=50,  # Depth of ResNet model
        norm_eval=False),  # Whether to set BN layers to eval mode when training
    cls_head=dict(  # Dict for classification head
        type='TSNHead',  # Name of classification head
        num_classes=400,  # Number of classes to be classified.
        in_channels=2048,  # The input channels of classification head.
        spatial_type='avg',  # Type of pooling in spatial dimension
        consensus=dict(type='AvgConsensus', dim=1),  # Config of consensus module
        dropout_ratio=0.4,  # Probability in dropout layer
        init_std=0.01, # Std value for linear layer initiation
        average_clips='prob'),  # Method to average multiple clip results
    data_preprocessor=dict(  # Dict for data preprocessor
        type='ActionDataPreprocessor',  # Name of data preprocessor
        mean=[123.675, 116.28, 103.53],  # Mean values of different channels to normalize
        std=[58.395, 57.12, 57.375],  # Std values of different channels to normalize
        format_shape='NCHW'),  # Final image shape format
    # model training and testing settings
    train_cfg=None,  # Config of training hyperparameters for TSN
    test_cfg=None)  # Config for testing hyperparameters for TSN.

# dataset settings
dataset_type = 'RawframeDataset'  # Type of dataset for training, validation and testing
data_root = 'data/kinetics400/rawframes_train/'  # Root path to data for training
data_root_val = 'data/kinetics400/rawframes_val/'  # Root path to data for validation and testing
ann_file_train = 'data/kinetics400/kinetics400_train_list_rawframes.txt'  # Path to the annotation file for training
ann_file_val = 'data/kinetics400/kinetics400_val_list_rawframes.txt'  # Path to the annotation file for validation
ann_file_test = 'data/kinetics400/kinetics400_val_list_rawframes.txt'  # Path to the annotation file for testing

train_pipeline = [  # Training data processing pipeline
    dict(  # Config of SampleFrames
        type='SampleFrames',  # Sample frames pipeline, sampling frames from video
        clip_len=1,  # Frames of each sampled output clip
        frame_interval=1,  # Temporal interval of adjacent sampled frames
        num_clips=3),  # Number of clips to be sampled
    dict(  # Config of RawFrameDecode
        type='RawFrameDecode'),  # Load and decode Frames pipeline, picking raw frames with given indices
    dict(  # Config of Resize
        type='Resize',  # Resize pipeline
        scale=(-1, 256)),  # The scale to resize images
    dict(  # Config of MultiScaleCrop
        type='MultiScaleCrop',  # Multi scale crop pipeline, cropping images with a list of randomly selected scales
        input_size=224,  # Input size of the network
        scales=(1, 0.875, 0.75, 0.66),  # Scales of width and height to be selected
        random_crop=False,  # Whether to randomly sample cropping bbox
        max_wh_scale_gap=1),  # Maximum gap of w and h scale levels
    dict(  # Config of Resize
        type='Resize',  # Resize pipeline
        scale=(224, 224),  # The scale to resize images
        keep_ratio=False),  # Whether to resize with changing the aspect ratio
    dict(  # Config of Flip
        type='Flip',  # Flip Pipeline
        flip_ratio=0.5),  # Probability of implementing flip
    dict(  # Config of FormatShape
        type='FormatShape',  # Format shape pipeline, Format final image shape to the given input_format
        input_format='NCHW'),  # Final image shape format
    dict(type='PackActionInputs')  # Config of PackActionInputs
]
val_pipeline = [  # Validation data processing pipeline
    dict(  # Config of SampleFrames
        type='SampleFrames',  # Sample frames pipeline, sampling frames from video
        clip_len=1,  # Frames of each sampled output clip
        frame_interval=1,  # Temporal interval of adjacent sampled frames
        num_clips=3,  # Number of clips to be sampled
        test_mode=True),  # Whether to set test mode in sampling
    dict(  # Config of RawFrameDecode
        type='RawFrameDecode'),  # Load and decode Frames pipeline, picking raw frames with given indices
    dict(  # Config of Resize
        type='Resize',  # Resize pipeline
        scale=(-1, 256)),  # The scale to resize images
    dict(  # Config of CenterCrop
        type='CenterCrop',  # Center crop pipeline, cropping the center area from images
        crop_size=224),  # The size to crop images
    dict(  # Config of Flip
        type='Flip',  # Flip pipeline
        flip_ratio=0),  # Probability of implementing flip
    dict(  # Config of FormatShape
        type='FormatShape',  # Format shape pipeline, Format final image shape to the given input_format
        input_format='NCHW'),  # Final image shape format
    dict(type='PackActionInputs')  # Config of PackActionInputs
]
test_pipeline = [  # Testing data processing pipeline
    dict(  # Config of SampleFrames
        type='SampleFrames',  # Sample frames pipeline, sampling frames from video
        clip_len=1,  # Frames of each sampled output clip
        frame_interval=1,  # Temporal interval of adjacent sampled frames
        num_clips=25,  # Number of clips to be sampled
        test_mode=True),  # Whether to set test mode in sampling
    dict(  # Config of RawFrameDecode
        type='RawFrameDecode'),  # Load and decode Frames pipeline, picking raw frames with given indices
    dict(  # Config of Resize
        type='Resize',  # Resize pipeline
        scale=(-1, 256)),  # The scale to resize images
    dict(  # Config of TenCrop
        type='TenCrop',  # Ten crop pipeline, cropping ten area from images
        crop_size=224),  # The size to crop images
    dict(  # Config of Flip
        type='Flip',  # Flip pipeline
        flip_ratio=0),  # Probability of implementing flip
    dict(  # Config of FormatShape
        type='FormatShape',  # Format shape pipeline, Format final image shape to the given input_format
        input_format='NCHW'),  # Final image shape format
    dict(type='PackActionInputs')  # Config of PackActionInputs
]

train_dataloader = dict(  # Config of train dataloader
    batch_size=32,  # Batch size of each single GPU during training
    num_workers=8,  # Workers to pre-fetch data for each single GPU during training
    persistent_workers=True,  # If `True`, the dataloader will not shut down the worker processes after an epoch end, which can accelerate training speed
    sampler=dict(
        type='DefaultSampler',  # DefaultSampler which supports both distributed and non-distributed training. Refer to https://github.com/open-mmlab/mmengine/blob/main/mmengine/dataset/sampler.py
        shuffle=True),  # Randomly shuffle the training data in each epoch
    dataset=dict(  # Config of train dataset
        type=dataset_type,
        ann_file=ann_file_train,  # Path of annotation file
        data_prefix=dict(img=data_root),  # Prefix of frame path
        pipeline=train_pipeline))
val_dataloader = dict(  # Config of validation dataloader
    batch_size=1,  # Batch size of each single GPU during validation
    num_workers=8,  # Workers to pre-fetch data for each single GPU during validation
    persistent_workers=True,  # If `True`, the dataloader will not shut down the worker processes after an epoch end
    sampler=dict(
        type='DefaultSampler',
        shuffle=False),  # Not shuffle during validation and testing
    dataset=dict(  # Config of validation dataset
        type=dataset_type,
        ann_file=ann_file_val,  # Path of annotation file
        data_prefix=dict(img=data_root_val),  # Prefix of frame path
        pipeline=val_pipeline,
        test_mode=True))
test_dataloader = dict(  # Config of test dataloader
    batch_size=32,  # Batch size of each single GPU during testing
    num_workers=8,  # Workers to pre-fetch data for each single GPU during testing
    persistent_workers=True,  # If `True`, the dataloader will not shut down the worker processes after an epoch end
    sampler=dict(
        type='DefaultSampler',
        shuffle=False),  # Not shuffle during validation and testing
    dataset=dict(  # Config of test dataset
        type=dataset_type,
        ann_file=ann_file_val,  # Path of annotation file
        data_prefix=dict(img=data_root_val),  # Prefix of frame path
        pipeline=test_pipeline,
        test_mode=True))

# evaluation settings
val_evaluator = dict(type='AccMetric')  # Config of validation evaluator
test_evaluator = val_evaluator  # Config of testing evaluator

train_cfg = dict(  # Config of training loop
    type='EpochBasedTrainLoop',  # Name of training loop
    max_epochs=100,  # Total training epochs
    val_begin=1,  # The epoch that begins validating
    val_interval=1)  # Validation interval
val_cfg = dict(  # Config of validation loop
    type='ValLoop')  # Name of validation loop
test_cfg = dict( # Config of testing loop
    type='TestLoop')  # Name of testing loop

# learning policy
param_scheduler = [  # Parameter scheduler for updating optimizer parameters, support dict or list
    dict(type='MultiStepLR',  # Decays the learning rate once the number of epoch reaches one of the milestones
        begin=0,  # Step at which to start updating the learning rate
        end=100,  # Step at which to stop updating the learning rate
        by_epoch=True,  # Whether the scheduled learning rate is updated by epochs
        milestones=[40, 80],  # Steps to decay the learning rate
        gamma=0.1)]  # Multiplicative factor of learning rate decay

# optimizer
optim_wrapper = dict(  # Config of optimizer wrapper
    type='OptimWrapper',  # Name of optimizer wrapper, switch to AmpOptimWrapper to enable mixed precision training
    optimizer=dict(  # Config of optimizer. Support all kinds of optimizers in PyTorch. Refer to https://pytorch.org/docs/stable/optim.html#algorithms
        type='SGD',  # Name of optimizer
        lr=0.01,  # Learning rate
        momentum=0.9,  # Momentum factor
        weight_decay=0.0001),  # Weight decay
    clip_grad=dict(max_norm=40, norm_type=2))  # Config of gradient clip

# runtime settings
default_scope = 'mmaction'  # The default registry scope to find modules. Refer to https://mmengine.readthedocs.io/en/latest/tutorials/registry.html
default_hooks = dict(  # Hooks to execute default actions like updating model parameters and saving checkpoints.
    runtime_info=dict(type='RuntimeInfoHook'),  # The hook to updates runtime information into message hub
    timer=dict(type='IterTimerHook'),  # The logger used to record time spent during iteration
    logger=dict(
        type='LoggerHook',  # The logger used to record logs during training/validation/testing phase
        interval=20,  # Interval to print the log
        ignore_last=False), # Ignore the log of last iterations in each epoch
    param_scheduler=dict(type='ParamSchedulerHook'),  # The hook to update some hyper-parameters in optimizer
    checkpoint=dict(
        type='CheckpointHook',  # The hook to save checkpoints periodically
        interval=3,  # The saving period
        save_best='auto',  # Specified metric to mearsure the best checkpoint during evaluation
        max_keep_ckpts=3),  # The maximum checkpoints to keep
    sampler_seed=dict(type='DistSamplerSeedHook'),  # Data-loading sampler for distributed training
    sync_buffers=dict(type='SyncBuffersHook'))  # Synchronize model buffers at the end of each epoch
env_cfg = dict(  # Dict for setting environment
    cudnn_benchmark=False,  # Whether to enable cudnn benchmark
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), # Parameters to setup multiprocessing
    dist_cfg=dict(backend='nccl')) # Parameters to setup distributed environment, the port can also be set

log_processor = dict(
    type='LogProcessor',  # Log processor used to format log information
    window_size=20,  # Default smooth interval
    by_epoch=True)  # Whether to format logs with epoch type
vis_backends = [  # List of visualization backends
    dict(type='LocalVisBackend')]  # Local visualization backend
visualizer = dict(  # Config of visualizer
    type='ActionVisualizer',  # Name of visualizer
    vis_backends=vis_backends)
log_level = 'INFO'  # The level of logging
load_from = None  # Load model checkpoint as a pre-trained model from a given path. This will not resume training.
resume = False  # Whether to resume from the checkpoint defined in `load_from`. If `load_from` is None, it will resume the latest checkpoint in the `work_dir`.











Config System for Spatio-Temporal Action Detection

We incorporate modular design into our config system, which is convenient to conduct various experiments.


	An Example of FastRCNN

To help the users have a basic idea of a complete config structure and the modules in a spatio-temporal action detection system,
we make brief comments on the config of FastRCNN as the following.
For more detailed usage and alternative for per parameter in each module, please refer to the API documentation.

# model setting
model = dict(  # Config of the model
    type='FastRCNN',  # Class name of the detector
    _scope_='mmdet',  # The scope of current config
    backbone=dict(  # Dict for backbone
        type='ResNet3dSlowOnly',  # Name of the backbone
        depth=50, # Depth of ResNet model
        pretrained=None,   # The url/site of the pretrained model
        pretrained2d=False, # If the pretrained model is 2D
        lateral=False,  # If the backbone is with lateral connections
        num_stages=4, # Stages of ResNet model
        conv1_kernel=(1, 7, 7), # Conv1 kernel size
        conv1_stride_t=1, # Conv1 temporal stride
        pool1_stride_t=1, # Pool1 temporal stride
        spatial_strides=(1, 2, 2, 1)),  # The spatial stride for each ResNet stage
    roi_head=dict(  # Dict for roi_head
        type='AVARoIHead',  # Name of the roi_head
        bbox_roi_extractor=dict(  # Dict for bbox_roi_extractor
            type='SingleRoIExtractor3D',  # Name of the bbox_roi_extractor
            roi_layer_type='RoIAlign',  # Type of the RoI op
            output_size=8,  # Output feature size of the RoI op
            with_temporal_pool=True), # If temporal dim is pooled
        bbox_head=dict( # Dict for bbox_head
            type='BBoxHeadAVA', # Name of the bbox_head
            in_channels=2048, # Number of channels of the input feature
            num_classes=81, # Number of action classes + 1
            multilabel=True,  # If the dataset is multilabel
            dropout_ratio=0.5),  # The dropout ratio used
    data_preprocessor=dict(  # Dict for data preprocessor
        type='ActionDataPreprocessor',  # Name of data preprocessor
        mean=[123.675, 116.28, 103.53],  # Mean values of different channels to normalize
        std=[58.395, 57.12, 57.375],  # Std values of different channels to normalize
        format_shape='NCHW')),  # Final image shape format
    # model training and testing settings
    train_cfg=dict(  # Training config of FastRCNN
        rcnn=dict(  # Dict for rcnn training config
            assigner=dict(  # Dict for assigner
                type='MaxIoUAssignerAVA', # Name of the assigner
                pos_iou_thr=0.9,  # IoU threshold for positive examples, > pos_iou_thr -> positive
                neg_iou_thr=0.9,  # IoU threshold for negative examples, < neg_iou_thr -> negative
                min_pos_iou=0.9), # Minimum acceptable IoU for positive examples
            sampler=dict( # Dict for sample
                type='RandomSampler', # Name of the sampler
                num=32, # Batch Size of the sampler
                pos_fraction=1, # Positive bbox fraction of the sampler
                neg_pos_ub=-1,  # Upper bound of the ratio of num negative to num positive
                add_gt_as_proposals=True), # Add gt bboxes as proposals
            pos_weight=1.0)),  # Loss weight of positive examples
    test_cfg=dict(rcnn=None))  # Testing config of FastRCNN

# dataset settings
dataset_type = 'AVADataset' # Type of dataset for training, validation and testing
data_root = 'data/ava/rawframes'  # Root path to data
anno_root = 'data/ava/annotations'  # Root path to annotations

ann_file_train = f'{anno_root}/ava_train_v2.1.csv'  # Path to the annotation file for training
ann_file_val = f'{anno_root}/ava_val_v2.1.csv'  # Path to the annotation file for validation

exclude_file_train = f'{anno_root}/ava_train_excluded_timestamps_v2.1.csv'  # Path to the exclude annotation file for training
exclude_file_val = f'{anno_root}/ava_val_excluded_timestamps_v2.1.csv'  # Path to the exclude annotation file for validation

label_file = f'{anno_root}/ava_action_list_v2.1_for_activitynet_2018.pbtxt'  # Path to the label file

proposal_file_train = f'{anno_root}/ava_dense_proposals_train.FAIR.recall_93.9.pkl'  # Path to the human detection proposals for training examples
proposal_file_val = f'{anno_root}/ava_dense_proposals_val.FAIR.recall_93.9.pkl'  # Path to the human detection proposals for validation examples

train_pipeline = [  # Training data processing pipeline
    dict(  # Config of SampleFrames
        type='AVASampleFrames',  # Sample frames pipeline, sampling frames from video
        clip_len=4,  # Frames of each sampled output clip
        frame_interval=16),  # Temporal interval of adjacent sampled frames
    dict(  # Config of RawFrameDecode
        type='RawFrameDecode'),  # Load and decode Frames pipeline, picking raw frames with given indices
    dict(  # Config of RandomRescale
        type='RandomRescale',   # Randomly rescale the shortedge by a given range
        scale_range=(256, 320)),   # The shortedge size range of RandomRescale
    dict(  # Config of RandomCrop
        type='RandomCrop',   # Randomly crop a patch with the given size
        size=256),   # The size of the cropped patch
    dict(  # Config of Flip
        type='Flip',  # Flip Pipeline
        flip_ratio=0.5),  # Probability of implementing flip
    dict(  # Config of FormatShape
        type='FormatShape',  # Format shape pipeline, Format final image shape to the given input_format
        input_format='NCTHW',  # Final image shape format
        collapse=True),   # Collapse the dim N if N == 1
    dict(type='PackActionInputs') # Pack input data
]

val_pipeline = [  # Validation data processing pipeline
    dict(  # Config of SampleFrames
        type='AVASampleFrames',  # Sample frames pipeline, sampling frames from video
        clip_len=4,  # Frames of each sampled output clip
        frame_interval=16),  # Temporal interval of adjacent sampled frames
    dict(  # Config of RawFrameDecode
        type='RawFrameDecode'),  # Load and decode Frames pipeline, picking raw frames with given indices
    dict(  # Config of Resize
        type='Resize',  # Resize pipeline
        scale=(-1, 256)),  # The scale to resize images
    dict(  # Config of FormatShape
        type='FormatShape',  # Format shape pipeline, Format final image shape to the given input_format
        input_format='NCTHW',  # Final image shape format
        collapse=True),   # Collapse the dim N if N == 1
    dict(type='PackActionInputs') # Pack input data
]

train_dataloader = dict(  # Config of train dataloader
    batch_size=32,  # Batch size of each single GPU during training
    num_workers=8,  # Workers to pre-fetch data for each single GPU during training
    persistent_workers=True,  # If `True`, the dataloader will not shut down the worker processes after an epoch end, which can accelerate training speed
    sampler=dict(
        type='DefaultSampler',  # DefaultSampler which supports both distributed and non-distributed training. Refer to https://github.com/open-mmlab/mmengine/blob/main/mmengine/dataset/sampler.py
        shuffle=True),  # Randomly shuffle the training data in each epoch
    dataset=dict(  # Config of train dataset
        type=dataset_type,
        ann_file=ann_file_train,  # Path of annotation file
        exclude_file=exclude_file_train,  # Path of exclude annotation file
        label_file=label_file,  # Path of label file
        data_prefix=dict(img=data_root),  # Prefix of frame path
        proposal_file=proposal_file_train,  # Path of human detection proposals
        pipeline=train_pipeline))
val_dataloader = dict(  # Config of validation dataloader
    batch_size=1,  # Batch size of each single GPU during evaluation
    num_workers=8,  # Workers to pre-fetch data for each single GPU during evaluation
    persistent_workers=True,  # If `True`, the dataloader will not shut down the worker processes after an epoch end
    sampler=dict(
        type='DefaultSampler',
        shuffle=False),  # Not shuffle during validation and testing
    dataset=dict(  # Config of validation dataset
        type=dataset_type,
        ann_file=ann_file_val,  # Path of annotation file
        exclude_file=exclude_file_val,  # Path of exclude annotation file
        label_file=label_file,  # Path of label file
        data_prefix=dict(img=data_root_val),  # Prefix of frame path
        proposal_file=proposal_file_val,  # Path of human detection proposals
        pipeline=val_pipeline,
        test_mode=True))
test_dataloader = val_dataloader  # Config of testing dataloader

# evaluation settings
val_evaluator = dict(  # Config of validation evaluator
    type='AVAMetric',
    ann_file=ann_file_val,
    label_file=label_file,
    exclude_file=exclude_file_val)
test_evaluator = val_evaluator  # Config of testing evaluator

train_cfg = dict(  # Config of training loop
    type='EpochBasedTrainLoop',  # Name of training loop
    max_epochs=20,  # Total training epochs
    val_begin=1,  # The epoch that begins validating
    val_interval=1)  # Validation interval
val_cfg = dict(  # Config of validation loop
    type='ValLoop')  # Name of validation loop
test_cfg = dict( # Config of testing loop
    type='TestLoop')  # Name of testing loop

# learning policy
param_scheduler = [ # Parameter scheduler for updating optimizer parameters, support dict or list
    dict(type='LinearLR',  # Decays the learning rate of each parameter group by linearly changing small multiplicative factor
        start_factor=0.1,  # The number we multiply learning rate in the first epoch
        by_epoch=True,  # Whether the scheduled learning rate is updated by epochs
  	  begin=0,  # Step at which to start updating the learning rate
  	  end=5),  # Step at which to stop updating the learning rate
    dict(type='MultiStepLR',  # Decays the learning rate once the number of epoch reaches one of the milestones
        begin=0,  # Step at which to start updating the learning rate
        end=20,  # Step at which to stop updating the learning rate
        by_epoch=True,  # Whether the scheduled learning rate is updated by epochs
        milestones=[10, 15],  # Steps to decay the learning rate
        gamma=0.1)]  # Multiplicative factor of learning rate decay

# optimizer
optim_wrapper = dict(  # Config of optimizer wrapper
    type='OptimWrapper',  # Name of optimizer wrapper, switch to AmpOptimWrapper to enable mixed precision training
    optimizer=dict(  # Config of optimizer. Support all kinds of optimizers in PyTorch. Refer to https://pytorch.org/docs/stable/optim.html#algorithms
        type='SGD',  # Name of optimizer
        lr=0.2,  # Learning rate
        momentum=0.9,  # Momentum factor
        weight_decay=0.0001),  # Weight decay
    clip_grad=dict(max_norm=40, norm_type=2))  # Config of gradient clip

# runtime settings
default_scope = 'mmaction'  # The default registry scope to find modules. Refer to https://mmengine.readthedocs.io/en/latest/tutorials/registry.html
default_hooks = dict(  # Hooks to execute default actions like updating model parameters and saving checkpoints.
    runtime_info=dict(type='RuntimeInfoHook'),  # The hook to updates runtime information into message hub
    timer=dict(type='IterTimerHook'),  # The logger used to record time spent during iteration
    logger=dict(
        type='LoggerHook',  # The logger used to record logs during training/validation/testing phase
        interval=20,  # Interval to print the log
        ignore_last=False), # Ignore the log of last iterations in each epoch
    param_scheduler=dict(type='ParamSchedulerHook'),  # The hook to update some hyper-parameters in optimizer
    checkpoint=dict(
        type='CheckpointHook',  # The hook to save checkpoints periodically
        interval=3,  # The saving period
        save_best='auto',  # Specified metric to mearsure the best checkpoint during evaluation
        max_keep_ckpts=3),  # The maximum checkpoints to keep
    sampler_seed=dict(type='DistSamplerSeedHook'),  # Data-loading sampler for distributed training
    sync_buffers=dict(type='SyncBuffersHook'))  # Synchronize model buffers at the end of each epoch
env_cfg = dict(  # Dict for setting environment
    cudnn_benchmark=False,  # Whether to enable cudnn benchmark
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), # Parameters to setup multiprocessing
    dist_cfg=dict(backend='nccl')) # Parameters to setup distributed environment, the port can also be set

log_processor = dict(
    type='LogProcessor',  # Log processor used to format log information
    window_size=20,  # Default smooth interval
    by_epoch=True)  # Whether to format logs with epoch type
vis_backends = [  # List of visualization backends
    dict(type='LocalVisBackend')]  # Local visualization backend
visualizer = dict(  # Config of visualizer
    type='ActionVisualizer',  # Name of visualizer
    vis_backends=vis_backends)
log_level = 'INFO'  # The level of logging
load_from = ('https://download.openmmlab.com/mmaction/v1.0/recognition/slowonly/'
             'slowonly_imagenet-pretrained-r50_8xb16-4x16x1-steplr-150e_kinetics400-rgb/'
             'slowonly_imagenet-pretrained-r50_8xb16-4x16x1-steplr-150e_kinetics400-rgb_20220901-e7b65fad.pth')  # Load model checkpoint as a pre-trained model from a given path. This will not resume training.
resume = False  # Whether to resume from the checkpoint defined in `load_from`. If `load_from` is None, it will resume the latest checkpoint in the `work_dir`.











Config System for Action localization

We incorporate modular design into our config system,
which is convenient to conduct various experiments.


	An Example of BMN

To help the users have a basic idea of a complete config structure and the modules in an action localization system,
we make brief comments on the config of BMN as the following.
For more detailed usage and alternative for per parameter in each module, please refer to the API documentation [https://mmaction2.readthedocs.io/en/latest/api.html].

# model settings
model = dict(  # Config of the model
    type='BMN',  # Class name of the localizer
    temporal_dim=100,  # Total frames selected for each video
    boundary_ratio=0.5,  # Ratio for determining video boundaries
    num_samples=32,  # Number of samples for each proposal
    num_samples_per_bin=3,  # Number of bin samples for each sample
    feat_dim=400,  # Dimension of feature
    soft_nms_alpha=0.4,  # Soft NMS alpha
    soft_nms_low_threshold=0.5,  # Soft NMS low threshold
    soft_nms_high_threshold=0.9,  # Soft NMS high threshold
    post_process_top_k=100)  # Top k proposals in post process

# dataset settings
dataset_type = 'ActivityNetDataset'  # Type of dataset for training, validation and testing
data_root = 'data/activitynet_feature_cuhk/csv_mean_100/'  # Root path to data for training
data_root_val = 'data/activitynet_feature_cuhk/csv_mean_100/'  # Root path to data for validation and testing
ann_file_train = 'data/ActivityNet/anet_anno_train.json'  # Path to the annotation file for training
ann_file_val = 'data/ActivityNet/anet_anno_val.json'  # Path to the annotation file for validation
ann_file_test = 'data/ActivityNet/anet_anno_test.json'  # Path to the annotation file for testing

train_pipeline = [  # Training data processing pipeline
    dict(type='LoadLocalizationFeature'),  # Load localization feature pipeline
    dict(type='GenerateLocalizationLabels'),  # Generate localization labels pipeline
    dict(
        type='PackLocalizationInputs', # Pack localization data
        keys=('gt_bbox'), # Keys of input
        meta_keys=('video_name'))] # Meta keys of input
val_pipeline = [  # Validation data processing pipeline
    dict(type='LoadLocalizationFeature'),  # Load localization feature pipeline
    dict(type='GenerateLocalizationLabels'),  # Generate localization labels pipeline
    dict(
        type='PackLocalizationInputs',  # Pack localization data
        keys=('gt_bbox'),   # Keys of input
        meta_keys=('video_name', 'duration_second', 'duration_frame',
                   'annotations', 'feature_frame'))]  # Meta keys of input
test_pipeline = [  # Testing data processing pipeline
    dict(type='LoadLocalizationFeature'),  # Load localization feature pipeline
    dict(
        type='PackLocalizationInputs',  # Pack localization data
        keys=('gt_bbox'),  # Keys of input
        meta_keys=('video_name', 'duration_second', 'duration_frame',
                   'annotations', 'feature_frame'))]  # Meta keys of input
train_dataloader = dict(  # Config of train dataloader
    batch_size=8,  # Batch size of each single GPU during training
    num_workers=8,  # Workers to pre-fetch data for each single GPU during training
    persistent_workers=True,  # If `True`, the dataloader will not shut down the worker processes after an epoch end, which can accelerate training speed
    sampler=dict(
        type='DefaultSampler',  # DefaultSampler which supports both distributed and non-distributed training. Refer to https://github.com/open-mmlab/mmengine/blob/main/mmengine/dataset/sampler.py
        shuffle=True),  # Randomly shuffle the training data in each epoch
    dataset=dict(  # Config of train dataset
        type=dataset_type,
        ann_file=ann_file_train,  # Path of annotation file
        data_prefix=dict(video=data_root),  # Prefix of video path
        pipeline=train_pipeline))
val_dataloader = dict(  # Config of validation dataloader
    batch_size=1,  # Batch size of each single GPU during evaluation
    num_workers=8,  # Workers to pre-fetch data for each single GPU during evaluation
    persistent_workers=True,  # If `True`, the dataloader will not shut down the worker processes after an epoch end
    sampler=dict(
        type='DefaultSampler',
        shuffle=False),  # Not shuffle during validation and testing
    dataset=dict(  # Config of validation dataset
        type=dataset_type,
        ann_file=ann_file_val,  # Path of annotation file
        data_prefix=dict(video=data_root_val),  # Prefix of video path
        pipeline=val_pipeline,
        test_mode=True))
test_dataloader = dict(  # Config of test dataloader
    batch_size=1,  # Batch size of each single GPU during testing
    num_workers=8,  # Workers to pre-fetch data for each single GPU during testing
    persistent_workers=True,  # If `True`, the dataloader will not shut down the worker processes after an epoch end
    sampler=dict(
        type='DefaultSampler',
        shuffle=False),  # Not shuffle during validation and testing
    dataset=dict(  # Config of test dataset
        type=dataset_type,
        ann_file=ann_file_val,  # Path of annotation file
        data_prefix=dict(video=data_root_val),  # Prefix of video path
        pipeline=test_pipeline,
        test_mode=True))

# evaluation settings
work_dir = './work_dirs/bmn_400x100_2x8_9e_activitynet_feature/'  # Directory to save the model checkpoints and logs for the current experiments
val_evaluator = dict(
  type='ANetMetric',
  metric_type='AR@AN',
  dump_config=dict(  # Config of localization output
      out=f'{work_dir}/results.json',  # Path to the output file
      output_format='json'))  # File format of the output file
test_evaluator = val_evaluator   # Set test_evaluator as val_evaluator

max_epochs = 9  # Total epochs to train the model
train_cfg = dict(  # Config of training loop
    type='EpochBasedTrainLoop',  # Name of training loop
    max_epochs=max_epochs,  # Total training epochs
    val_begin=1,  # The epoch that begins validating
    val_interval=1)  # Validation interval
val_cfg = dict(  # Config of validation loop
    type='ValLoop')  # Name of validating loop
test_cfg = dict( # Config of testing loop
    type='TestLoop')  # Name of testing loop

# learning policy
param_scheduler = [  # Parameter scheduler for updating optimizer parameters, support dict or list
    dict(type='MultiStepLR',  # Decays the learning rate once the number of epoch reaches one of the milestones
    begin=0,  # Step at which to start updating the learning rate
    end=max_epochs,  # Step at which to stop updating the learning rate
    by_epoch=True,  # Whether the scheduled learning rate is updated by epochs
    milestones=[7, ],  # Steps to decay the learning rate
    gamma=0.1)]  # Multiplicative factor of parameter value decay

# optimizer
optim_wrapper = dict(  # Config of optimizer wrapper
    type='OptimWrapper',  # Name of optimizer wrapper, switch to AmpOptimWrapper to enable mixed precision training
    optimizer=dict(  # Config of optimizer. Support all kinds of optimizers in PyTorch. Refer to https://pytorch.org/docs/stable/optim.html#algorithms
        type='Adam',  # Name of optimizer
        lr=0.001,  # Learning rate
        weight_decay=0.0001),  # Weight decay
    clip_grad=dict(max_norm=40, norm_type=2))  # Config of gradient clip

# runtime settings
default_scope = 'mmaction'  # The default registry scope to find modules. Refer to https://mmengine.readthedocs.io/en/latest/tutorials/registry.html
default_hooks = dict(  # Hooks to execute default actions like updating model parameters and saving checkpoints.
    runtime_info=dict(type='RuntimeInfoHook'),  # The hook to updates runtime information into message hub
    timer=dict(type='IterTimerHook'),  # The logger used to record time spent during iteration
    logger=dict(
        type='LoggerHook',  # The logger used to record logs during training/validation/testing phase
        interval=20,  # Interval to print the log
        ignore_last=False), # Ignore the log of last iterations in each epoch
    param_scheduler=dict(type='ParamSchedulerHook'),  # The hook to update some hyper-parameters in optimizer
    checkpoint=dict(
        type='CheckpointHook',  # The hook to save checkpoints periodically
        interval=3,  # The saving period
        save_best='auto',  # Specified metric to mearsure the best checkpoint during evaluation
        max_keep_ckpts=3),  # The maximum checkpoints to keep
    sampler_seed=dict(type='DistSamplerSeedHook'),  # Data-loading sampler for distributed training
    sync_buffers=dict(type='SyncBuffersHook'))  # Synchronize model buffers at the end of each epoch
env_cfg = dict(  # Dict for setting environment
    cudnn_benchmark=False,  # Whether to enable cudnn benchmark
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), # Parameters to setup multiprocessing
    dist_cfg=dict(backend='nccl')) # Parameters to setup distributed environment, the port can also be set

log_processor = dict(
    type='LogProcessor',  # Log processor used to format log information
    window_size=20,  # Default smooth interval
    by_epoch=True)  # Whether to format logs with epoch type
vis_backends = [  # List of visualization backends
    dict(type='LocalVisBackend')]  # Local visualization backend
visualizer = dict(  # Config of visualizer
    type='ActionVisualizer',  # Name of visualizer
    vis_backends=vis_backends)
log_level = 'INFO'  # The level of logging
load_from = None  # Load model checkpoint as a pre-trained model from a given path. This will not resume training.
resume = False  # Whether to resume from the checkpoint defined in `load_from`. If `load_from` is None, it will resume the latest checkpoint in the `work_dir`.
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Training


Training with your PC

You can use tools/train.py to train a model on a single machine with a CPU and optionally a GPU.

Here is the full usage of the script:

python tools/train.py ${CONFIG_FILE} [ARGS]






Note

By default, MMAction2 prefers GPU to CPU. If you want to train a model on CPU, please empty CUDA_VISIBLE_DEVICES or set it to -1 to make GPU invisible to the program.

CUDA_VISIBLE_DEVICES=-1 python tools/train.py ${CONFIG_FILE} [ARGS]










	ARGS
	Description





	CONFIG_FILE
	The path to the config file.



	--work-dir WORK_DIR
	The target folder to save logs and checkpoints. Defaults to a folder with the same name of the config file under ./work_dirs.



	--resume [RESUME]
	Resume training. If a path is specified, resume from it, while if not specified, try to auto resume from the latest checkpoint.



	--amp
	Enable automatic-mixed-precision training.



	--no-validate
	Not suggested. Disable checkpoint evaluation during training.



	--auto-scale-lr
	Auto scale the learning rate according to the actual batch size and the original batch size.



	--seed
	Random seed.



	--diff-rank-seed
	Whether or not set different seeds for different ranks.



	--deterministic
	Whether to set deterministic options for CUDNN backend.



	--cfg-options CFG_OPTIONS
	Override some settings in the used config, the key-value pair in xxx=yyy format will be merged into the config file. If the value to be overwritten is a list, it should be of the form of either key="[a,b]" or key=a,b. The argument also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]". Note that the quotation marks are necessary and that no white space is allowed.



	--launcher {none,pytorch,slurm,mpi}
	Options for job launcher. Defaults to none.







Training with multiple GPUs

We provide a shell script to start a multi-GPUs task with torch.distributed.launch.

bash tools/dist_train.sh ${CONFIG} ${GPUS} [PY_ARGS]








	ARGS
	Description





	CONFIG
	The path to the config file.



	GPUS
	The number of GPUs to be used.



	[PYARGS]
	The other optional arguments of tools/train.py, see here.





You can also specify extra arguments of the launcher by environment variables. For example, change the
communication port of the launcher to 29666 by the following command:

PORT=29666 bash tools/dist_train.sh ${CONFIG} ${GPUS} [PY_ARGS]





If you want to startup multiple training jobs and use different GPUs, you can launch them by specifying
different port and visible devices.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 bash tools/dist_train.sh ${CONFIG} 4 [PY_ARGS]
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 bash tools/dist_train.sh ${CONFIG} 4 [PY_ARGS]







Training with multiple machines


Multiple machines in the same network

If you launch a training job with multiple machines connected with ethernet, you can run the following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR bash tools/dist_train.sh $CONFIG $GPUS





On the second machine:

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR bash tools/dist_train.sh $CONFIG $GPUS





The following extra environment variables need to be specified to train or test models with multiple machines:




	ENV_VARS
	Description





	NNODES
	The total number of machines. Defaults to 1.



	NODE_RANK
	The index of the local machine. Defaults to 0.



	PORT
	The communication port, it should be the same in all machines. Defaults to 29500.



	MASTER_ADDR
	The IP address of the master machine, it should be the same in all machines. Defaults to 127.0.0.1.





Usually it is slow if you do not have high speed networking like InfiniBand.



Multiple machines managed with slurm

If you run MMAction2 on a cluster managed with slurm [https://slurm.schedmd.com/], you can use the script slurm_train.sh.

[ENV_VARS] bash tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG} [PY_ARGS]





Here are the arguments description of the script.




	ARGS
	Description





	PARTITION
	The partition to use in your cluster.



	JOB_NAME
	The name of your job, you can name it as you like.



	CONFIG
	The path to the config file.



	[PYARGS]
	The other optional arguments of tools/train.py, see here.





Here are the environment variables can be used to configure the slurm job.




	ENV_VARS
	Description





	GPUS
	The number of GPUs to be used. Defaults to 8.



	GPUS_PER_NODE
	The number of GPUs to be allocated per node. Defaults to 8.



	CPUS_PER_TASK
	The number of CPUs to be allocated per task (Usually one GPU corresponds to one task). Defaults to 5.



	SRUN_ARGS
	The other arguments of srun. Available options can be found here.









Test


Test with your PC

You can use tools/test.py to test a model on a single machine with a CPU and optionally a GPU.

Here is the full usage of the script:

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [ARGS]






Note

By default, MMAction2 prefers GPU to CPU. If you want to test a model on CPU, please empty CUDA_VISIBLE_DEVICES or set it to -1 to make GPU invisible to the program.

CUDA_VISIBLE_DEVICES=-1 python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [ARGS]










	ARGS
	Description





	CONFIG_FILE
	The path to the config file.



	CHECKPOINT_FILE
	The path to the checkpoint file (It can be a http link)



	--work-dir WORK_DIR
	The directory to save the file containing evaluation metrics. Defaults to a folder with the same name of the config file under ./work_dirs.



	--dump DUMP
	The path to dump all outputs of the model for offline evaluation.



	--cfg-options CFG_OPTIONS
	Override some settings in the used config, the key-value pair in xxx=yyy format will be merged into the config file. If the value to be overwritten is a list, it should be of the form of either key="[a,b]" or key=a,b. The argument also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]". Note that the quotation marks are necessary and that no white space is allowed.



	--show-dir SHOW_DIR
	The directory to save the result visualization images.



	--show
	Visualize the prediction result in a window.



	--interval INTERVAL
	The interval of samples to visualize. Defaults to 1.



	--wait-time WAIT_TIME
	The display time of every window (in seconds). Defaults to 2.



	--launcher {none,pytorch,slurm,mpi}
	Options for job launcher. Defaults to none.







Test with multiple GPUs

We provide a shell script to start a multi-GPUs task with torch.distributed.launch.

bash tools/dist_test.sh ${CONFIG} ${CHECKPOINT} ${GPUS} [PY_ARGS]








	ARGS
	Description





	CONFIG
	The path to the config file.



	CHECKPOINT
	The path to the checkpoint file (It can be a http link)



	GPUS
	The number of GPUs to be used.



	[PYARGS]
	The other optional arguments of tools/test.py, see here.





You can also specify extra arguments of the launcher by environment variables. For example, change the
communication port of the launcher to 29666 by the following command:

PORT=29666 bash tools/dist_test.sh ${CONFIG} ${CHECKPOINT} ${GPUS} [PY_ARGS]





If you want to startup multiple test jobs and use different GPUs, you can launch them by specifying
different port and visible devices.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 bash tools/dist_test.sh ${CONFIG} ${CHECKPOINT} 4 [PY_ARGS]
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 bash tools/dist_test.sh ${CONFIG} ${CHECKPOINT} 4 [PY_ARGS]







Test with multiple machines


Multiple machines in the same network

If you launch a test job with multiple machines connected with ethernet, you can run the following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR bash tools/dist_test.sh $CONFIG $CHECKPOINT $GPUS





On the second machine:

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR bash tools/dist_test.sh $CONFIG $CHECKPOINT $GPUS





Compared with multi-GPUs in a single machine, you need to specify some extra environment variables:




	ENV_VARS
	Description





	NNODES
	The total number of machines. Defaults to 1.



	NODE_RANK
	The index of the local machine. Defaults to 0.



	PORT
	The communication port, it should be the same in all machines. Defaults to 29500.



	MASTER_ADDR
	The IP address of the master machine, it should be the same in all machines. Defaults to 127.0.0.1.





Usually it is slow if you do not have high speed networking like InfiniBand.



Multiple machines managed with slurm

If you run MMAction2 on a cluster managed with slurm [https://slurm.schedmd.com/], you can use the script slurm_test.sh.

[ENV_VARS] bash tools/slurm_test.sh ${PARTITION} ${JOB_NAME} ${CONFIG} ${CHECKPOINT} [PY_ARGS]





Here are the arguments description of the script.




	ARGS
	Description





	PARTITION
	The partition to use in your cluster.



	JOB_NAME
	The name of your job, you can name it as you like.



	CONFIG
	The path to the config file.



	CHECKPOINT
	The path to the checkpoint file (It can be a http link)



	[PYARGS]
	The other optional arguments of tools/test.py, see here.





Here are the environment variables can be used to configure the slurm job.




	ENV_VARS
	Description





	GPUS
	The number of GPUs to be used. Defaults to 8.



	GPUS_PER_NODE
	The number of GPUs to be allocated per node. Defaults to 8.



	CPUS_PER_TASK
	The number of CPUs to be allocated per task (Usually one GPU corresponds to one task). Defaults to 5.



	SRUN_ARGS
	The other arguments of srun. Available options can be found here.
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Prepare Dataset

MMAction2 supports many existing datasets. In this chapter, we will lead you to prepare datasets for MMAction2.


	Prepare Dataset


	Notes on Video Data Format


	Use built-in datasets


	Use a custom dataset


	Action Recognition


	Skeleton-based Action Recognition


	Audio-based Action Recognition


	Spatio-temporal Action Detection


	Temporal Action Localization






	Use mixed datasets for training


	Repeat dataset






	Browse dataset









Notes on Video Data Format

MMAction2 supports two types of data formats: raw frames and video. The former is widely used in previous projects such as TSN [https://github.com/yjxiong/temporal-segment-networks].
This is fast when SSD is available but fails to scale to the fast-growing datasets.
(For example, the newest edition of Kinetics [https://www.deepmind.com/open-source/kinetics] has 650K  videos and the total frames will take up several TBs.)
The latter saves much space but has to do the computation intensive video decoding at execution time.
To make video decoding faster, we support several efficient video loading libraries, such as decord [https://github.com/zhreshold/decord], PyAV [https://github.com/PyAV-Org/PyAV], etc.



Use built-in datasets

MMAction2 already supports many datasets, we provide shell scripts for data preparation under the path $MMACTION2/tools/data/, please refer to supported datasets [https://mmaction2.readthedocs.io/en/latest/datasetzoo_statistics.html] for details to prepare specific datasets.



Use a custom dataset

The simplest way is to convert your dataset to existing dataset formats:


	RawFrameDataset and VideoDataset for Action Recognition


	PoseDataset for Skeleton-based Action Recognition


	AudioDataset for Audio-based Action Recognition


	AVADataset for Spatio-temporal Action Detection


	ActivityNetDataset for Temporal Action Localization




After the data pre-processing, the users need to further modify the config files to use the dataset.
Here is an example of using a custom dataset in rawframe format.

In configs/task/method/my_custom_config.py:

...
# dataset settings
dataset_type = 'RawframeDataset'
data_root = 'path/to/your/root'
data_root_val = 'path/to/your/root_val'
ann_file_train = 'data/custom/custom_train_list.txt'
ann_file_val = 'data/custom/custom_val_list.txt'
ann_file_test = 'data/custom/custom_val_list.txt'
...
data = dict(
    videos_per_gpu=32,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        ann_file=ann_file_train,
        ...),
    val=dict(
        type=dataset_type,
        ann_file=ann_file_val,
        ...),
    test=dict(
        type=dataset_type,
        ann_file=ann_file_test,
        ...))
...






Action Recognition

There are two kinds of annotation files for action recognition.


	rawframe annotaiton for RawFrameDataset

The annotation of a rawframe dataset is a text file with multiple lines,
and each line indicates frame_directory (relative path) of a video,
total_frames of a video and the label of a video, which are split by a whitespace.

Here is an example.

some/directory-1 163 1
some/directory-2 122 1
some/directory-3 258 2
some/directory-4 234 2
some/directory-5 295 3
some/directory-6 121 3







	video annotation for VideoDataset

The annotation of a video dataset is a text file with multiple lines,
and each line indicates a sample video with the filepath (relative path) and label,
which are split by a whitespace.

Here is an example.

some/path/000.mp4 1
some/path/001.mp4 1
some/path/002.mp4 2
some/path/003.mp4 2
some/path/004.mp4 3
some/path/005.mp4 3











Skeleton-based Action Recognition

The task recognizes the action class based on the skeleton sequence (time sequence of keypoints). We provide some methods to build your custom skeleton dataset.


	Build from RGB video data

You need to extract keypoints data from video and convert it to a supported format, we provide a tutorial [https://github.com/open-mmlab/mmaction2/tree/main/configs/skeleton/posec3d/custom_dataset_training.md] with detailed instructions.



	Build from existing keypoint data

Assuming that you already have keypoint data in coco formats, you can gather them into a pickle file.

Each pickle file corresponds to an action recognition dataset. The content of a pickle file is a dictionary with two fields: split and annotations


	Split: The value of the split field is a dictionary: the keys are the split names, while the values are lists of video identifiers that belong to the specific clip.


	Annotations: The value of the annotations field is a list of skeleton annotations, each skeleton annotation is a dictionary, containing the following fields:


	frame_dir (str): The identifier of the corresponding video.


	total_frames (int): The number of frames in this video.


	img_shape (tuple[int]): The shape of a video frame, a tuple with two elements, in the format of (height, width). Only required for 2D skeletons.


	original_shape (tuple[int]): Same as img_shape.


	label (int): The action label.


	keypoint (np.ndarray, with shape [M x T x V x C]): The keypoint annotation.


	M: number of persons;


	T: number of frames (same as total_frames);


	V: number of keypoints (25 for NTURGB+D 3D skeleton, 17 for CoCo, 18 for OpenPose, etc. );


	C: number of dimensions for keypoint coordinates (C=2 for 2D keypoint, C=3 for 3D keypoint).






	keypoint_score (np.ndarray, with shape [M x T x V]): The confidence score of keypoints. Only required for 2D skeletons.








Here is an example:

{
    "split":
        {
            'xsub_train':
                ['S001C001P001R001A001', ...],
            'xsub_val':
                ['S001C001P003R001A001', ...],
            ...
        }

    "annotations:
        [
            {
                {
                    'frame_dir': 'S001C001P001R001A001',
                    'label': 0,
                    'img_shape': (1080, 1920),
                    'original_shape': (1080, 1920),
                    'total_frames': 103,
                    'keypoint': array([[[[1032. ,  334.8], ...]]])
                    'keypoint_score': array([[[0.934 , 0.9766, ...]]])
                },
                {
                    'frame_dir': 'S001C001P003R001A001',
                    ...
                },
                ...

            }
        ]
}





Support other keypoint formats needs further modification, please refer to customize dataset.







Audio-based Action Recognition

MMAction2 provides support for audio-based action recognition tasks utilizing the AudioDataset. This task employs mel spectrogram features as input. An example annotation file format is as follows:

ihWykL5mYRI.npy 300 153
lumzQD42AN8.npy 240 321
sWFRmD9Of4s.npy 250 250
w_IpfgRsBVA.npy 300 356





Each line represents a training sample. Taking the first line as an example, ihWykL5mYRI.npy corresponds to the filename of the mel spectrogram feature. The value 300 represents the total number of frames of the original video corresponding to this mel spectrogram feature, and 153 denotes the class label. We take the following two steps to perpare the mel spectrogram feature data:

First, extract audios from videos:

cd $MMACTION2
python tools/data/extract_audio.py ${ROOT} ${DST_ROOT} [--ext ${EXT}] [--num-workers ${N_WORKERS}] \
    [--level ${LEVEL}]






	ROOT: The root directory of the videos.


	DST_ROOT: The destination root directory of the audios.


	EXT: Extension of the video files. e.g., mp4.


	N_WORKERS: Number of processes to be used.




Next, offline generate the mel spectrogram features from the audios:

cd $MMACTION2
python tools/data/build_audio_features.py ${AUDIO_HOME_PATH} ${SPECTROGRAM_SAVE_PATH} [--level ${LEVEL}] \
    [--ext $EXT] [--num-workers $N_WORKERS] [--part $PART]






	AUDIO_HOME_PATH: The root directory of the audio files.


	SPECTROGRAM_SAVE_PATH: The destination root directory of the audio features.


	EXT: Extension of the audio files. e.g., m4a.


	N_WORKERS: Number of processes to be used.


	PART: Determines how many parts to be splited and which part to run. e.g., 2/5 means splitting all files into 5-fold and executing the 2nd part. This is useful if you have several machines.






Spatio-temporal Action Detection

MMAction2 supports the task based on AVADataset. The annotation contains groundtruth bbox and proposal bbox.


	groundtruth bbox
groundtruth bbox is a csv file with multiple lines, and each line is a detection sample of one frame, with following formats:

video_identifier, time_stamp, lt_x, lt_y, rb_x, rb_y, label, entity_id
each field means:
video_identifier : The identifier of the corresponding video
time_stamp: The time stamp of current frame
lt_x: The normalized x-coordinate of the left top point of bounding box
lt_y: The normalized y-coordinate of the left top point of bounding box
rb_y: The normalized x-coordinate of the right bottom point of bounding box
rb_y: The normalized y-coordinate of the right bottom point of bounding box
label: The action label
entity_id: a unique integer allowing this box to be linked to other boxes depicting the same person in adjacent frames of this video

Here is an example.

_-Z6wFjXtGQ,0902,0.063,0.049,0.524,0.996,12,0
_-Z6wFjXtGQ,0902,0.063,0.049,0.524,0.996,74,0
...







	proposal bbox
proposal bbox is a pickle file generated by a person detector, and usually needs to be fine-tuned on the target dataset. The pickle file contains a dict with below data structure:

{'video_identifier,time_stamp': bbox_info}

video_identifier (str): The identifier of the corresponding video
time_stamp (int): The time stamp of current frame
bbox_info (np.ndarray, with shape [n, 5]): Detected bbox, <x1> <y1> <x2> <y2> <score>. x1, x2, y1, y2 are normalized with respect to frame size, which are between 0.0-1.0.







Temporal Action Localization

We support Temporal Action Localization based on ActivityNetDataset. The annotation of ActivityNet dataset is a json file. Each key is a video name and the corresponding value is the meta data and annotation for the video.

Here is an example.

{
  "video1": {
      "duration_second": 211.53,
      "duration_frame": 6337,
      "annotations": [
          {
              "segment": [
                  30.025882995319815,
                  205.2318595943838
              ],
              "label": "Rock climbing"
          }
      ],
      "feature_frame": 6336,
      "fps": 30.0,
      "rfps": 29.9579255898
  },
  "video2": {...
  }
  ...
}








Use mixed datasets for training

MMAction2 also supports to mix dataset for training. Currently it supports to repeat dataset.


Repeat dataset

We use RepeatDataset as wrapper to repeat the dataset. For example, suppose the original dataset as Dataset_A,
to repeat it, the config looks like the following

dataset_A_train = dict(
        type='RepeatDataset',
        times=N,
        dataset=dict(  # This is the original config of Dataset_A
            type='Dataset_A',
            ...
            pipeline=train_pipeline
        )
    )








Browse dataset

coming soon…
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Finetuning Models

This tutorial provides instructions for users to use the pre-trained models
to finetune them on other datasets, so that better performance can be achieved.


	Finetuning Models


	Outline


	Choose Template Config


	Modify Head


	Modify Dataset


	Modify Training Schedule


	Use Pre-Trained Model


	Start Training









Outline

There are two steps to finetune a model on a new dataset.


	Add support for the new dataset. See Prepare Dataset and Customize Dataset.


	Modify the configs. This will be discussed in this tutorial.






Choose Template Config

Here, we would like to take configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py as an example. We first copy this config file to the same folder and rename it to tsn_ucf101.py, then four parts in the config need attention, specifically, add new keys for non-existing keys and modify the original keys for existing keys.



Modify Head

The num_classes in the cls_head need to be changed to the class number of the new dataset.
The weights of the pre-trained models are reused except for the final prediction layer.
So it is safe to change the class number.
In our case, UCF101 has 101 classes.
So we change it from 400 (class number of Kinetics-400) to 101.

# model settings
model = dict(
    cls_head=dict(
        type='TSNHead',
        num_classes=101  # change from 400 to 101
        ))







Modify Dataset

MMAction2 supports UCF101, Kinetics-400, Moments in Time, Multi-Moments in Time, THUMOS14,
Something-Something V1&V2, ActivityNet Dataset.
The users may need to adapt one of the above datasets to fit their special datasets.
You could refer to Prepare Dataset and Customize Dataset for more details.
In our case, UCF101 is already supported by various dataset types, like VideoDataset,
so we change the config as follows.

# dataset settings
dataset_type = 'VideoDataset'
data_root = 'data/ucf101/videos_train/'
data_root_val = 'data/ucf101/videos_val/'
ann_file_train = 'data/ucf101/ucf101_train_list.txt'
ann_file_val = 'data/ucf101/ucf101_val_list.txt'







Modify Training Schedule

Finetuning usually requires a smaller learning rate and fewer training epochs.

train_cfg = dict(
    type='EpochBasedTrainLoop',
    max_epochs=50,  # change from 100 to 50
    val_begin=1,
    val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')

# learning policy
param_scheduler = [
    dict(
        type='MultiStepLR',
        begin=0,
        end=50,  # change from 100 to 50
        by_epoch=True,
        milestones=[20, 40],  # change milestones
        gamma=0.1)
]

# optimizer
optim_wrapper = dict(
    optimizer=dict(
        type='SGD',
        lr=0.005, # change from 0.01 to 0.005
        momentum=0.9,
        weight_decay=0.0001),
    clip_grad=dict(max_norm=40, norm_type=2))







Use Pre-Trained Model

To use the pre-trained model for the whole network, the new config adds the link of pre-trained models in the load_from.
We set load_from=None as default in configs/_base_/default_runtime.py and owing to inheritance design, users can directly change it by setting load_from in their configs.

# use the pre-trained model for the whole TSN network
load_from = 'https://download.openmmlab.com/mmaction/v1.0/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb_20220906-cd10898e.pth'  # model path can be found in model zoo







Start Training

Now, we have finished the fine-tuning config file as follows:

_base_ = [
    '../../_base_/models/tsn_r50.py', '../../_base_/schedules/sgd_100e.py',
    '../../_base_/default_runtime.py'
]

# model settings
model = dict(
    cls_head=dict(
        type='TSNHead',
        num_classes=101  # change from 400 to 101
        ))

# dataset settings
dataset_type = 'VideoDataset'
data_root = 'data/ucf101/videos_train/'
data_root_val = 'data/ucf101/videos_val/'
ann_file_train = 'data/ucf101/ucf101_train_list.txt'
ann_file_val = 'data/ucf101/ucf101_val_list.txt'

file_client_args = dict(io_backend='disk')

train_pipeline = [
    dict(type='DecordInit', **file_client_args),
    dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=3),
    dict(type='DecordDecode'),
    dict(type='Resize', scale=(-1, 256)),
    dict(
        type='MultiScaleCrop',
        input_size=224,
        scales=(1, 0.875, 0.75, 0.66),
        random_crop=False,
        max_wh_scale_gap=1),
    dict(type='Resize', scale=(224, 224), keep_ratio=False),
    dict(type='Flip', flip_ratio=0.5),
    dict(type='FormatShape', input_format='NCHW'),
    dict(type='PackActionInputs')
]
val_pipeline = [
    dict(type='DecordInit', **file_client_args),
    dict(
        type='SampleFrames',
        clip_len=1,
        frame_interval=1,
        num_clips=3,
        test_mode=True),
    dict(type='DecordDecode'),
    dict(type='Resize', scale=(-1, 256)),
    dict(type='CenterCrop', crop_size=224),
    dict(type='FormatShape', input_format='NCHW'),
    dict(type='PackActionInputs')
]
test_pipeline = [
    dict(type='DecordInit', **file_client_args),
    dict(
        type='SampleFrames',
        clip_len=1,
        frame_interval=1,
        num_clips=25,
        test_mode=True),
    dict(type='DecordDecode'),
    dict(type='Resize', scale=(-1, 256)),
    dict(type='TenCrop', crop_size=224),
    dict(type='FormatShape', input_format='NCHW'),
    dict(type='PackActionInputs')
]

train_dataloader = dict(
    batch_size=32,
    num_workers=8,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
        type=dataset_type,
        ann_file=ann_file_train,
        data_prefix=dict(video=data_root),
        pipeline=train_pipeline))
val_dataloader = dict(
    batch_size=32,
    num_workers=8,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        ann_file=ann_file_val,
        data_prefix=dict(video=data_root_val),
        pipeline=val_pipeline,
        test_mode=True))
test_dataloader = dict(
    batch_size=1,
    num_workers=8,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        ann_file=ann_file_val,
        data_prefix=dict(video=data_root_val),
        pipeline=test_pipeline,
        test_mode=True))

train_cfg = dict(
    type='EpochBasedTrainLoop',
    max_epochs=50,  # change from 100 to 50
    val_begin=1,
    val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')

# learning policy
param_scheduler = [
    dict(
        type='MultiStepLR',
        begin=0,
        end=50,  # change from 100 to 50
        by_epoch=True,
        milestones=[20, 40],  # change milestones
        gamma=0.1)
]

# optimizer
optim_wrapper = dict(
    optimizer=dict(
        type='SGD',
        lr=0.005, # change from 0.01 to 0.005
        momentum=0.9,
        weight_decay=0.0001),
    clip_grad=dict(max_norm=40, norm_type=2))

val_evaluator = dict(type='AccMetric')
test_evaluator = val_evaluator

default_hooks = dict(checkpoint=dict(interval=3, max_keep_ckpts=3))

# Default setting for scaling LR automatically
#   - `enable` means enable scaling LR automatically
#       or not by default.
#   - `base_batch_size` = (8 GPUs) x (32 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=256)

# use the pre-trained model for the whole TSN network
load_from = 'https://download.openmmlab.com/mmaction/v1.0/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb_20220906-cd10898e.pth'






An easier way is to inherit the kinetics400 config and only specify the modified keys. Please make sure that the custom config is in the same folder with configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py.

_base_ = [
    'tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py'  # inherit template config
]

# model settings
model = dict(
    cls_head=dict(
        type='TSNHead',
        num_classes=101))  # change from 400 to 101


# dataset settings
dataset_type = 'VideoDataset'
data_root = 'data/ucf101/videos_train/'
data_root_val = 'data/ucf101/videos_val/'
ann_file_train = 'data/ucf101/ucf101_train_list.txt'
ann_file_val = 'data/ucf101/ucf101_val_list.txt'

train_dataloader = dict(
    dataset=dict(
        ann_file=ann_file_train,
        data_prefix=dict(video=data_root)))
val_dataloader = dict(
    dataset=dict(
        ann_file=ann_file_val,
        data_prefix=dict(video=data_root_val)))
test_dataloader = dict(
    dataset=dict(
        ann_file=ann_file_val,
        data_prefix=dict(video=data_root_val)))

train_cfg = dict(
    type='EpochBasedTrainLoop',
    max_epochs=50,  # change from 100 to 50
    val_begin=1,
    val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')

param_scheduler = [
    dict(
        type='MultiStepLR',
        begin=0,
        end=50,  # change from 100 to 50
        by_epoch=True,
        milestones=[20, 40],  # change milestones
        gamma=0.1)
]

optim_wrapper = dict(
    optimizer=dict(
        type='SGD',
        lr=0.005, # change from 0.01 to 0.005
        momentum=0.9,
        weight_decay=0.0001),
    clip_grad=dict(max_norm=40, norm_type=2))

# use the pre-trained model for the whole TSN network
load_from = 'https://download.openmmlab.com/mmaction/v1.0/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb_20220906-cd10898e.pth'






You can use the following command to finetune a model on your dataset.

python tools/train.py ${CONFIG_FILE} [optional arguments]





Example: train the TSN model on Kinetics-400 dataset in a deterministic option.

python tools/train.py configs/recognition/tsn/tsn_ucf101.py  \
    --seed=0 --deterministic





For more details, you can refer to the Training part in the Training and Test Tutorial.
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Dataflow in MMAction2

coming soon…
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Customize Models

coming soon…
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Customize Dataset

In this tutorial, we will introduce some methods about how to customize your own dataset by online conversion.


	Customize Dataset


	General understanding of the Dataset in MMAction2


	Customize new datasets


	Customize keypoint format for PoseDataset









General understanding of the Dataset in MMAction2

MMAction2 provides task-specific Dataset class, e.g. VideoDataset/RawframeDataset for action recognition, AVADataset for spatio-temporal action detection, PoseDataset for skeleton-based action recognition. These task-specific datasets only require the implementation of load_data_list(self) for generating a data list from the annotation file. The remaining functions are automatically handled by the superclass (i.e., BaseActionDataset and BaseDataset). The following table shows the inheritance relationship and the main method of the modules.




	Class Name
	Class Method





	MMAction2::VideoDataset
	load_data_list(self)  Build data list from the annotation file.
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Customize Data Pipeline

In this tutorial, we will introduce some methods about how to build the data pipeline (i.e., data transformations) for your tasks.


	Customize Data Pipeline


	Design of Data Pipeline


	Modify the Training/Testing Pipeline


	Loading


	Sampling Frames and Other Processing


	Formatting






	Add New Data Transforms









Design of Data Pipeline

The data pipeline refers to the procedure of handling the data sample dict when indexing a sample from the dataset, and comprises a series of data transforms. Each data transform accepts a dict as input, processes it, and produces a dict as output for the subsequent data transform in the sequence.

Below is an example data pipeline for training SlowFast on Kinetics using VideoDataset. The pipeline initially employs decord [https://github.com/dmlc/decord] to read the raw videos and randomly sample one video clip, which comprises 32 frames with a frame interval of 2. Subsequently, it applies random resized crop and random horizontal flip to all frames before formatting the data shape as NCTHW, which is (1, 3, 32, 224, 224) in this example.

train_pipeline = [
    dict(type='DecordInit',),
    dict(type='SampleFrames', clip_len=32, frame_interval=2, num_clips=1),
    dict(type='DecordDecode'),
    dict(type='Resize', scale=(-1, 256)),
    dict(type='RandomResizedCrop'),
    dict(type='Resize', scale=(224, 224), keep_ratio=False),
    dict(type='Flip', flip_ratio=0.5),
    dict(type='FormatShape', input_format='NCTHW'),
    dict(type='PackActionInputs')
]





A comprehensive list of all available data transforms in MMAction2 can be found in the mmaction.datasets.transforms.



Modify the Training/Testing Pipeline

The data pipeline in MMAction2 is highly adaptable, as nearly every step of the data preprocessing can be configured from the config file. However, the wide array of options may be overwhelming for some users.

Below are some general practices and guidance for building a data pipeline for action recognition tasks.


Loading

At the beginning of a data pipeline, it is customary to load videos. However, if the frames have already been extracted, you should utilize RawFrameDecode and modify the dataset type to RawframeDataset.

train_pipeline = [
    dict(type='SampleFrames', clip_len=32, frame_interval=2, num_clips=1),
    dict(type='RawFrameDecode'),
    dict(type='Resize', scale=(-1, 256)),
    dict(type='RandomResizedCrop'),
    dict(type='Resize', scale=(224, 224), keep_ratio=False),
    dict(type='Flip', flip_ratio=0.5),
    dict(type='FormatShape', input_format='NCTHW'),
    dict(type='PackActionInputs')
]





If you need to load data from files with distinct formats (e.g., pkl, bin, etc.) or from specific locations, you may create a new loading transform and include it at the beginning of the data pipeline. Please refer to Add New Data Transforms for more details.



Sampling Frames and Other Processing

During training and testing, we may have different strategies to sample frames from the video.

For instance, when testing SlowFast, we uniformly sample multiple clips as follows:

test_pipeline = [
    ...
    dict(
        type='SampleFrames',
        clip_len=32,
        frame_interval=2,
        num_clips=10,
        test_mode=True),
    ...
]





In the above example, 10 video clips, each comprising 32 frames, will be uniformly sampled from each video. test_mode=True is employed to accomplish this, as opposed to random sampling during training.

Another example involves TSN/TSM models, which sample multiple segments from the video:

train_pipeline = [
    ...
    dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=8),
    ...
]





Typically, the data augmentations in the data pipeline handles only video-level transforms, such as resizing or cropping, but not transforms like video normalization or mixup/cutmix. This is because we can do video normalization and mixup/cutmix on batched video data
to accelerate processing using GPUs. To configure video normalization and mixup/cutmix, please use the mmaction.models.utils.data_preprocessor.



Formatting

Formatting involves collecting training data from the data information dict and converting it into a format that is compatible with the model.

In most cases, you can simply employ PackActionInputs, and it will
convert the image in NumPy Array format to PyTorch Tensor, and pack the ground truth category information and
other meta information as a dict-like object ActionDataSample.

train_pipeline = [
    ...
    dict(type='PackActionInputs'),
]








Add New Data Transforms


	To create a new data transform, write a new transform class in a python file named, for example, my_transforms.py. The data transform classes must inherit
the mmcv.transforms.BaseTransform class and override the transform method which takes a dict as input and returns a dict. Finally, place my_transforms.py in the folder mmaction/datasets/transforms/.

from mmcv.transforms import BaseTransform
from mmaction.datasets import TRANSFORMS

@TRANSFORMS.register_module()
class MyTransform(BaseTransform):
     def __init__(self, msg):
         self.msg = msg

    def transform(self, results):
        # Modify the data information dict `results`.
        print(msg, 'MMAction2.')
        return results







	Import the new class in the mmaction/datasets/transforms/__init__.py.

...
from .my_transform import MyTransform

__all__ = [
    ..., 'MyTransform'
]







	Use it in config files.

train_pipeline = [
    ...
    dict(type='MyTransform', msg='Hello!'),
    ...
]













            

          

      

      

    

  

  
    
    

    Customize Optimizer
    

    

    

    

    

    
 
  

    
      
          
            
  
Customize Optimizer

In this tutorial, we will introduce some methods about how to build the optimizer and learning rate scheduler for your tasks.


	Customize Optimizer


	Build optimizers using optim_wrapper


	Use optimizers supported by PyTorch


	Parameter-wise finely configuration


	Gradient clipping


	Gradient accumulation






	Customize parameter schedules


	Customize learning rate schedules


	Customize momentum schedules






	Add new optimizers or constructors


	Add new optimizers


	1. Implement a new optimizer


	2. Import the optimizer


	3. Specify the optimizer in the config file






	Add new optimizer constructors













Build optimizers using optim_wrapper

We use the optim_wrapper field to configure the strategies of optimization, which includes choices of the optimizer, parameter-wise configurations, gradient clipping and accumulation. A simple example can be:

optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(type='SGD', lr=0.0003, weight_decay=0.0001)
)





In the above example, a SGD optimizer with learning rate 0.0003 and weight decay 0.0001 is built.


Use optimizers supported by PyTorch

We support all the optimizers implemented by PyTorch. To use a different optimizer, just need to change the optimizer field of config files. For example, if you want to use torch.optim.Adam, the modification in the config file could be as the following.

optim_wrapper = dict(
    type='OptimWrapper',
    optimizer = dict(
        type='Adam',
        lr=0.001,
        betas=(0.9, 0.999),
        eps=1e-08,
        weight_decay=0,
        amsgrad=False),
)





First we need to change the value of type to the desired optimizer name supported in torch.optim. Next we add necessary arguments of this optimizer to the optimizer field. The above config will build the following optimizer:

torch.optim.Adam(lr=0.001,
                 betas=(0.9, 0.999),
                 eps=1e-08,
                 weight_decay=0,
                 amsgrad=False)







Parameter-wise finely configuration

Some models may have parameter-specific settings for optimization, for example, no weight decay to the BatchNorm layers or using different learning rates for different network layers.
To finely configure them, we can use the paramwise_cfg argument in optim_wrapper.


	Set different hyper-parameter multipliers for different types of parameters.

For instance, we can set norm_decay_mult=0. in paramwise_cfg to change the weight decay of weight and bias of normalization layers to zero.

optim_wrapper = dict(
    optimizer=dict(type='SGD', lr=0.8, weight_decay=1e-4),
    paramwise_cfg=dict(norm_decay_mult=0.))





More types of parameters are supported to configured, list as follow:


	lr_mult: Multiplier for learning rate of all parameters.


	decay_mult: Multiplier for weight decay of all parameters.


	bias_lr_mult: Multiplier for learning rate of bias (Not include normalization layers’ biases and deformable convolution layers’ offsets). Defaults to 1.


	bias_decay_mult: Multiplier for weight decay of bias (Not include normalization layers’ biases and deformable convolution layers’ offsets). Defaults to 1.


	norm_decay_mult: Multiplier for weight decay of weigh and bias of normalization layers. Defaults to 1.


	dwconv_decay_mult: Multiplier for weight decay of depth-wise convolution layers. Defaults to 1.


	bypass_duplicate: Whether to bypass duplicated parameters. Defaults to False.


	dcn_offset_lr_mult: Multiplier for learning rate of deformable convolution layers. Defaults to 1.






	Set different hyper-parameter multipliers for specific parameters.

MMAction2 can use custom_keys in paramwise_cfg to specify different parameters to use different learning rates or weight decay.

For example, to set all learning rates and weight decays of backbone.layer0 to 0, the rest of backbone remains the same as the optimizer and the learning rate of head to 0.001, use the configs below.

optim_wrapper = dict(
    optimizer=dict(type='SGD', lr=0.01, weight_decay=0.0001),
    paramwise_cfg=dict(
        custom_keys={
            'backbone.layer0': dict(lr_mult=0, decay_mult=0),
            'backbone': dict(lr_mult=1),
            'head': dict(lr_mult=0.1)
        }))











Gradient clipping

During the training process, the loss function may get close to a cliffy region and cause gradient explosion. And gradient clipping is helpful to stabilize the training process. More introduction can be found in this page [https://paperswithcode.com/method/gradient-clipping].

Currently we support clip_grad option in optim_wrapper for gradient clipping, refers to PyTorch Documentation.

Here is an example:

optim_wrapper = dict(
    optimizer=dict(type='SGD', lr=0.01, weight_decay=0.0001),
    # norm_type: type of the used p-norm, here norm_type is 2.
    clip_grad=dict(max_norm=35, norm_type=2))







Gradient accumulation

When computing resources are lacking, the batch size can only be set to a small value, which may affect the performance of models. Gradient accumulation can be used to solve this problem. We support accumulative_counts option in optim_wrapper for gradient accumulation.

Here is an example:

train_dataloader = dict(batch_size=64)
optim_wrapper = dict(
    optimizer=dict(type='SGD', lr=0.01, weight_decay=0.0001),
    accumulative_counts=4)





Indicates that during training, back-propagation is performed every 4 iters. And the above is equivalent to:

train_dataloader = dict(batch_size=256)
optim_wrapper = dict(
    optimizer=dict(type='SGD', lr=0.01, weight_decay=0.0001))








Customize parameter schedules

In training, the optimzation parameters such as learing rate, momentum, are usually not fixed but changing through iterations or epochs. PyTorch supports several learning rate schedulers, which are not sufficient for complex strategies. In MMAction2, we provide param_scheduler for better controls of different parameter schedules.


Customize learning rate schedules

Learning rate schedulers are widely used to improve performance. We support most of the PyTorch schedulers, including ExponentialLR, LinearLR, StepLR, MultiStepLR, etc.

All available learning rate scheduler can be found , and the
names of learning rate schedulers end with LR.


	Single learning rate schedule

In most cases, we use only one learning rate schedule for simplicity. For instance, MultiStepLR is used as the default learning rate schedule for ResNet. Here, param_scheduler is a dictionary.

param_scheduler = dict(
    type='MultiStepLR',
    by_epoch=True,
    milestones=[100, 150],
    gamma=0.1)





Or, we want to use the CosineAnnealingLR scheduler to decay the learning rate:

param_scheduler = dict(
    type='CosineAnnealingLR',
    by_epoch=True,
    T_max=num_epochs)







	Multiple learning rate schedules

In some of the training cases, multiple learning rate schedules are applied for higher accuracy. For example ,in the early stage, training is easy to be volatile, and warmup is a technique to reduce volatility.
The learning rate will increase gradually from a minor value to the expected value by warmup and decay afterwards by other schedules.

In MMAction2, simply combines desired schedules in param_scheduler as a list can achieve the warmup strategy.

Here are some examples:


	linear warmup during the first 50 iters.




  param_scheduler = [
      # linear warm-up by iters
      dict(type='LinearLR',
          start_factor=0.001,
          by_epoch=False,  # by iters
          end=50),  # only warm up for first 50 iters
      # main learing rate schedule
      dict(type='MultiStepLR',
          by_epoch=True,
          milestones=[8, 11],
          gamma=0.1)
  ]






	linear warmup and update lr by iter during the first 10 epochs.




  param_scheduler = [
      # linear warm-up by epochs in [0, 10) epochs
      dict(type='LinearLR',
          start_factor=0.001,
          by_epoch=True,
          end=10,
          convert_to_iter_based=True,  # Update learning rate by iter.
      ),
      # use CosineAnnealing schedule after 10 epochs
      dict(type='CosineAnnealingLR', by_epoch=True, begin=10)
  ]





Notice that, we use begin and end arguments here to assign the valid range, which is [begin, end) for this schedule. And the range unit is defined by by_epoch argument. If not specified, the begin is 0 and the end is the max epochs or iterations.

If the ranges for all schedules are not continuous, the learning rate will stay constant in ignored range, otherwise all valid schedulers will be executed in order in a specific stage, which behaves the same as PyTorch ChainedScheduler.







Customize momentum schedules

We support using momentum schedulers to modify the optimizer’s momentum according to learning rate, which could make the loss converge in a faster way. The usage is the same as learning rate schedulers.

All available learning rate scheduler can be found , and the
names of momentum rate schedulers end with Momentum.

Here is an example:

param_scheduler = [
    # the lr scheduler
    dict(type='LinearLR', ...),
    # the momentum scheduler
    dict(type='LinearMomentum',
         start_factor=0.001,
         by_epoch=False,
         begin=0,
         end=1000)
]








Add new optimizers or constructors

This part will modify the MMAction2 source code or add code to the MMAction2 framework, beginners can skip it.


Add new optimizers

In academic research and industrial practice, it may be necessary to use optimization methods not implemented by MMAction2, and you can add them through the following methods.


1. Implement a new optimizer

Assume you want to add an optimizer named MyOptimizer, which has arguments a, b, and c.
You need to create a new file under mmaction/engine/optimizers, and implement the new optimizer in the file, for example, in mmaction/engine/optimizers/my_optimizer.py:

from torch.optim import Optimizer
from mmaction.registry import OPTIMIZERS


@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):

    def __init__(self, a, b, c):
        ...

    def step(self, closure=None):
        ...







2. Import the optimizer

To find the above module defined above, this module should be imported during the running. First import it in the mmaction/engine/optimizers/__init__.py to add it into the mmaction.engine package.

# In mmaction/engine/optimizers/__init__.py
...
from .my_optimizer import MyOptimizer # MyOptimizer maybe other class name

__all__ = [..., 'MyOptimizer']





During running, we will automatically import the mmaction.engine package and register the MyOptimizer at the same time.



3. Specify the optimizer in the config file

Then you can use MyOptimizer in the optim_wrapper.optimizer field of config files.

optim_wrapper = dict(
    optimizer=dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value))








Add new optimizer constructors

Some models may have some parameter-specific settings for optimization, like different weight decay rate for all BatchNorm layers.

Although we already can use the optim_wrapper.paramwise_cfg field to
configure various parameter-specific optimizer settings. It may still not cover your need.

Of course, you can modify it. By default, we use the DefaultOptimWrapperConstructor
class to deal with the construction of optimizer. And during the construction, it fine-grainedly configures the optimizer settings of
different parameters according to the paramwise_cfg，which could also serve as a template for new optimizer constructor.

You can overwrite these behaviors by add new optimizer constructors.

# In mmaction/engine/optimizers/my_optim_constructor.py
from mmengine.optim import DefaultOptimWrapperConstructor
from mmaction.registry import OPTIM_WRAPPER_CONSTRUCTORS


@OPTIM_WRAPPER_CONSTRUCTORS.register_module()
class MyOptimWrapperConstructor:

    def __init__(self, optim_wrapper_cfg, paramwise_cfg=None):
        ...

    def __call__(self, model):
        ...





And then, import it and use it almost like the optimizer tutorial.


	Import it in the mmaction/engine/optimizers/__init__.py to add it into the mmaction.engine package.

# In mmaction/engine/optimizers/__init__.py
...
from .my_optim_constructor import MyOptimWrapperConstructor

__all__ = [..., 'MyOptimWrapperConstructor']







	Use MyOptimWrapperConstructor in the optim_wrapper.constructor field of config files.

optim_wrapper = dict(
    constructor=dict(type='MyOptimWrapperConstructor'),
    optimizer=...,
    paramwise_cfg=...,
)
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Customize Logging

MMAction2 produces a lot of logs during the running process, such as loss, iteration time, learning rate, etc. In this section, we will introduce you how to output custom log. More details about the logging system, please refer to MMEngine Tutorial [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/logging.html].


	Customize Logging


	Flexible Logging System


	Customize log


	Export the debug log









Flexible Logging System

The MMAction2 logging system is configured by the LogProcessor in default_runtime [https://github.com/open-mmlab/mmaction2/tree/main/configs/_base_/default_runtime.py] by default, which is equivalent to:

log_processor = dict(type='LogProcessor', window_size=20, by_epoch=True)





By default, the LogProcessor captures all fields that begin with loss returned by model.forward. For instance, in the following model, loss1 and loss2 will be logged automatically without any additional configuration.

from mmengine.model import BaseModel

class ToyModel(BaseModel):
    def __init__(self) -> None:
        super().__init__()
        self.linear = nn.Linear(1, 1)

    def forward(self, img, label, mode):
        feat = self.linear(img)
        loss1 = (feat - label).pow(2)
        loss2 = (feat - label).abs()
        return dict(loss1=loss1, loss2=loss2)





The output log follows the following format:

08/21 02:58:41 - mmengine - INFO - Epoch(train) [1][10/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0019  data_time: 0.0004  loss1: 0.8381  loss2: 0.9007  loss: 1.7388
08/21 02:58:41 - mmengine - INFO - Epoch(train) [1][20/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0029  data_time: 0.0010  loss1: 0.1978  loss2: 0.4312  loss: 0.6290





LogProcessor will output the log in the following format:


	The prefix of the log:


	epoch mode(by_epoch=True): Epoch(train) [{current_epoch}/{current_iteration}]/{dataloader_length}


	iteration mode(by_epoch=False): Iter(train) [{current_iteration}/{max_iteration}]






	Learning rate (lr): The learning rate of the last iteration.


	Time:


	time: The averaged time for inference of the last window_size iterations.


	data_time: The averaged time for loading data of the last window_size iterations.


	eta: The estimated time of arrival to finish the training.






	Loss: The averaged loss output by model of the last window_size iterations.





Warning

log_processor outputs the epoch based log by default(by_epoch=True). To get an expected log matched with the train_cfg, we should set the same value for by_epoch in train_cfg and log_processor.



Based on the rules above, the code snippet will count the average value of the loss1 and the loss2 every 20 iterations. More types of statistical methods, please refer to mmengine.runner.LogProcessor.



Customize log

The logging system could not only log the loss, lr, .etc but also collect and output the custom log. For example, if we want to statistic the intermediate loss:

The ToyModel calculate loss_tmp in forward, but don’t save it into the return dict.

from mmengine.logging import MessageHub

class ToyModel(BaseModel):

    def __init__(self) -> None:
        super().__init__()
        self.linear = nn.Linear(1, 1)

    def forward(self, img, label, mode):
        feat = self.linear(img)
        loss_tmp = (feat - label).abs()
        loss = loss_tmp.pow(2)

        message_hub = MessageHub.get_current_instance()
        # update the intermediate `loss_tmp` in the message hub
        message_hub.update_scalar('train/loss_tmp', loss_tmp.sum())
        return dict(loss=loss)





Add the loss_tmp into the config:

log_processor = dict(
    type='LogProcessor',
    window_size=20,
    by_epoch=True,
    custom_cfg=[
        # statistic the loss_tmp with the averaged value
            dict(
                data_src='loss_tmp',
                window_size=20,
                method_name='mean')
        ])





The loss_tmp will be added to the output log:

08/21 03:40:31 - mmengine - INFO - Epoch(train) [1][10/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0026  data_time: 0.0008  loss_tmp: 0.0097  loss: 0.0000
08/21 03:40:31 - mmengine - INFO - Epoch(train) [1][20/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0028  data_time: 0.0013  loss_tmp: 0.0065  loss: 0.0000







Export the debug log

To export the debug log to the work_dir, you can set log_level in config file as follows:

log_level='DEBUG'





08/21 18:16:22 - mmengine - DEBUG - Get class `LocalVisBackend` from "vis_backend" registry in "mmengine"
08/21 18:16:22 - mmengine - DEBUG - An `LocalVisBackend` instance is built from registry, its implementation can be found in mmengine.visualization.vis_backend
08/21 18:16:22 - mmengine - DEBUG - Get class `RuntimeInfoHook` from "hook" registry in "mmengine"
08/21 18:16:22 - mmengine - DEBUG - An `RuntimeInfoHook` instance is built from registry, its implementation can be found in mmengine.hooks.runtime_info_hook
08/21 18:16:22 - mmengine - DEBUG - Get class `IterTimerHook` from "hook" registry in "mmengine"
...





Besides, logs of different ranks will be saved in debug mode if you are training your model with the shared storage. The hierarchy of the log is as follows:

./tmp
├── tmp.log
├── tmp_rank1.log
├── tmp_rank2.log
├── tmp_rank3.log
├── tmp_rank4.log
├── tmp_rank5.log
├── tmp_rank6.log
└── tmp_rank7.log
...
└── tmp_rank63.log





The log of Multiple machines with independent storage:

# device: 0:
work_dir/
└── exp_name_logs
    ├── exp_name.log
    ├── exp_name_rank1.log
    ├── exp_name_rank2.log
    ├── exp_name_rank3.log
    ...
    └── exp_name_rank7.log

# device: 7:
work_dir/
└── exp_name_logs
    ├── exp_name_rank56.log
    ├── exp_name_rank57.log
    ├── exp_name_rank58.log
    ...
    └── exp_name_rank63.log
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Useful Tools

Apart from training/testing scripts, We provide lots of useful tools under the tools/ directory.


Useful Tools Link



	Useful Tools


	Useful Tools Link


	Model Conversion


	Prepare a model for publishing






	Miscellaneous


	Evaluating a metric


	Print the entire config


	Check videos


	Multi-Stream Fusion















Model Conversion


Prepare a model for publishing

tools/deployment/publish_model.py helps users to prepare their model for publishing.

Before you upload a model to AWS, you may want to:

(1) convert model weights to CPU tensors.
(2) delete the optimizer states.
(3) compute the hash of the checkpoint file and append the hash id to the filename.

python tools/deployment/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}





E.g.,

python tools/deployment/publish_model.py work_dirs/tsn_r50_8xb32-1x1x3-100e_kinetics400-rgb/latest.pth tsn_r50_1x1x3_100e_kinetics400_rgb.pth





The final output filename will be tsn_r50_8xb32-1x1x3-100e_kinetics400-rgb-{hash id}.pth.




Miscellaneous


Evaluating a metric

tools/analysis_tools/eval_metric.py evaluates certain metrics of the results saved in a file according to a config file.

The saved result file is created on tools/test.py by setting the arguments --out ${RESULT_FILE} to indicate the result file,
which stores the final output of the whole model.

python tools/analysis/eval_metric.py ${CONFIG_FILE} ${RESULT_FILE} [--eval ${EVAL_METRICS}] [--cfg-options ${CFG_OPTIONS}] [--eval-options ${EVAL_OPTIONS}]







Print the entire config

tools/analysis_tools/print_config.py prints the whole config verbatim, expanding all its imports.

python tools/analysis_tools/print_config.py ${CONFIG} [-h] [--options ${OPTIONS [OPTIONS...]}]







Check videos

tools/analysis_tools/check_videos.py uses specified video encoder to iterate all samples that are specified by the input configuration file, looks for invalid videos (corrupted or missing), and saves the corresponding file path to the output file. Please note that after deleting invalid videos, users need to regenerate the video file list.

python tools/analysis_tools/check_videos.py ${CONFIG} [-h] [--options OPTIONS [OPTIONS ...]] [--cfg-options CFG_OPTIONS [CFG_OPTIONS ...]] [--output-file OUTPUT_FILE] [--split SPLIT] [--decoder DECODER] [--num-processes NUM_PROCESSES] [--remove-corrupted-videos]







Multi-Stream Fusion

tools/analysis_tools/report_accuracy.py uses the dumped results (by setting --dump res.pkl when testing) to fuse the multi-stream prediction scores, i.e., late fusion.

python tools/analysis_tools/report_accuracy.py [--preds ${RESULT_PKL_1 [RESULT_PKL_2 ...]}] [--coefficients ${COEFFICIENT_1 [COEFFICIENT_2, ...]}] [--apply-softmax]





Take joint-bone fusion as an example, which is a general practice in the task of skeleton-based action recognition.

python tools/analysis_tools/report_accuracy.py --preds demo/fuse/joint.pkl demo/fuse/bone.pkl --coefficients 1.0 1.0





Mean Class Accuracy: 0.9180
Top 1 Accuracy: 0.9333
Top 5 Accuracy: 0.9833
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Model Zoo Summary

In this page, we list all algorithms we support. You can click the link to jump to the corresponding model pages.

And we also list all checkpoints for different tasks we provide. You can sort or search checkpoints in the table and click the corresponding link to model pages for more details.


All supported algorithms


	Number of papers: 35


	Algorithm: 35






	Number of checkpoints: 189


	[Algorithm] Actor-Centric Relation Network (2 ckpts)


	[Algorithm] Long-Term Feature Banks for Detailed Video Understanding (2 ckpts)


	[Algorithm] SlowFast Networks for Video Recognition (7 ckpts)


	[Algorithm] SlowFast Networks for Video Recognition (15 ckpts)


	[Algorithm] VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training (2 ckpts)


	[Algorithm] Non-local Neural Networks (4 ckpts)


	[Algorithm] Learning Spatiotemporal Features with 3D Convolutional Networks (1 ckpts)


	[Algorithm] Video Classification with Channel-Separated Convolutional Networks (3 ckpts)


	[Algorithm] Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset (6 ckpts)


	[Algorithm] MViTv2: Improved Multiscale Vision Transformers for Classification and Detection (9 ckpts)


	[Algorithm] Omni-sourced Webly-supervised Learning for Video Recognition (1 ckpts)


	[Algorithm] A Closer Look at Spatiotemporal Convolutions for Action Recognition (2 ckpts)


	[Algorithm] SlowFast Networks for Video Recognition (5 ckpts)


	[Algorithm] SlowFast Networks for Video Recognition (10 ckpts)


	[Algorithm] Video Swin Transformer (6 ckpts)


	[Algorithm] TAM: Temporal Adaptive Module for Video Recognition (3 ckpts)


	[Algorithm] Is Space-Time Attention All You Need for Video Understanding (3 ckpts)


	[Algorithm] Temporal Interlacing Network (3 ckpts)


	[Algorithm] Temporal Pyramid Network for Action Recognition (3 ckpts)


	[Algorithm] Temporal Relational Reasoning in Videos (2 ckpts)


	[Algorithm] TSM: Temporal Shift Module for Efficient Video Understanding (12 ckpts)


	[Algorithm] Temporal Segment Networks: Towards Good Practices for Deep Action Recognition (12 ckpts)


	[Algorithm] UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning (3 ckpts)


	[Algorithm] UniFormerV2: Spatiotemporal Learning by Arming Image ViTs with Video UniFormer (23 ckpts)


	[Algorithm] VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training (2 ckpts)


	[Algorithm] VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking (2 ckpts)


	[Algorithm] X3D: Expanding Architectures for Efficient Video Recognition (2 ckpts)


	[Algorithm] Audiovisual SlowFast Networks for Video Recognition (1 ckpts)


	[Algorithm] BMN: Boundary-Matching Network for Temporal Action Proposal Generation (2 ckpts)


	[Algorithm] BSN: Boundary Sensitive Network for Temporal Action Proposal Generation (1 ckpts)


	[Algorithm] CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval (1 ckpts)


	[Algorithm] Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition (8 ckpts)


	[Algorithm] Revisiting Skeleton-based Action Recognition (7 ckpts)


	[Algorithm] Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition (16 ckpts)


	[Algorithm] PYSKL: Towards Good Practices for Skeleton Action Recognition (8 ckpts)










Action Recognition


Kinetics-400



	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Top-5 (%)

	Readme





	c2d_r50-in1k-pre-nopool_8xb32-8x8x1-100e_kinetics400-rgb

	24.30

	33.00

	73.44

	91.0

	link



	c2d_r101-in1k-pre-nopool_8xb32-8x8x1-100e_kinetics400-rgb

	43.30

	63.00

	74.97

	91.77

	link



	c2d_r50-in1k-pre_8xb32-8x8x1-100e_kinetics400-rgb

	24.30

	19.00

	73.89

	91.21

	link



	c2d_r50-in1k-pre_8xb32-16x4x1-100e_kinetics400-rgb

	24.30

	39.00

	74.97

	91.91

	link



	ircsn_ig65m-pretrained-r152_8xb12-32x2x1-58e_kinetics400-rgb

	29.70

	97.63

	82.87

	95.9

	link



	ircsn_ig65m-pretrained-r152-bnfrozen_8xb12-32x2x1-58e_kinetics400-rgb

	29.70

	97.63

	82.84

	95.92

	link



	ircsn_ig65m-pretrained-r50-bnfrozen_8xb12-32x2x1-58e_kinetics400-rgb

	13.13

	55.90

	79.44

	94.26

	link



	ipcsn_r152_32x2x1-180e_kinetics400-rgb

	33.02

	109.90

	77.80

	93.1

	link



	ircsn_r152_32x2x1-180e_kinetics400-rgb

	29.70

	97.63

	76.53

	92.28

	link



	ipcsn_ig65m-pretrained-r152-bnfrozen_32x2x1-58e_kinetics400-rgb

	33.02

	109.90

	82.68

	95.69

	link



	ipcsn_sports1m-pretrained-r152-bnfrozen_32x2x1-58e_kinetics400-rgb

	33.02

	109.90

	79.07

	93.82

	link



	ircsn_sports1m-pretrained-r152-bnfrozen_32x2x1-58e_kinetics400-rgb

	33.02

	109.90

	78.57

	93.44

	link



	i3d_imagenet-pretrained-r50-nl-dot-product_8xb8-32x2x1-100e_kinetics400-rgb

	35.40

	59.30

	74.80

	92.07

	link



	i3d_imagenet-pretrained-r50-nl-embedded-gaussian_8xb8-32x2x1-100e_kinetics400-rgb

	35.40

	59.30

	74.73

	91.8

	link



	i3d_imagenet-pretrained-r50-nl-gaussian_8xb8-32x2x1-100e_kinetics400-rgb

	31.70

	56.50

	73.97

	91.33

	link



	i3d_imagenet-pretrained-r50_8xb8-32x2x1-100e_kinetics400-rgb

	28.00

	43.50

	73.47

	91.27

	link



	i3d_imagenet-pretrained-r50_8xb8-dense-32x2x1-100e_kinetics400-rgb

	28.00

	43.50

	73.77

	91.35

	link



	i3d_imagenet-pretrained-r50-heavy_8xb8-32x2x1-100e_kinetics400-rgb

	33.00

	166.30

	76.21

	92.48

	link



	mvit-small-p244_32xb16-16x4x1-200e_kinetics400-rgb_infer

	

	

	81.10

	94.7

	link



	mvit-small-p244_32xb16-16x4x1-200e_kinetics400-rgb

	34.50

	64.00

	80.60

	94.7

	link



	mvit-base-p244_32x3x1_kinetics400-rgb

	

	

	81.10

	94.7

	link



	mvit-large-p244_40x3x1_kinetics400-rgb

	

	

	81.10

	94.7

	link



	mvit-small-p244_k400-maskfeat-pre_8xb32-16x4x1-100e_kinetics400-rgb

	36.40

	71.00

	81.80

	95.2

	link



	slowonly_r50_8xb16-8x8x1-256e_imagenet-kinetics400-rgb

	32.45

	54.75

	77.30

	93.23

	link



	r2plus1d_r34_8xb8-8x8x1-180e_kinetics400-rgb

	63.80

	53.10

	69.76

	88.41

	link



	r2plus1d_r34_8xb8-32x2x1-180e_kinetics400-rgb

	63.80

	213.00

	75.46

	92.28

	link



	slowfast_r50_8xb8-4x16x1-256e_kinetics400-rgb

	34.50

	36.30

	75.55

	92.35

	link



	slowfast_r50_8xb8-8x8x1-256e_kinetics400-rgb

	34.60

	66.10

	76.80

	92.99

	link



	slowfast_r50_8xb8-8x8x1-steplr-256e_kinetics400-rgb

	34.60

	66.10

	76.65

	92.86

	link



	slowfast_r101_8xb8-8x8x1-256e_kinetics400-rgb

	62.90

	126.00

	78.65

	93.88

	link



	slowfast_r101-r50_32xb8-4x16x1-256e_kinetics400-rgb

	62.40

	64.90

	77.03

	92.99

	link



	slowonly_r50_8xb16-4x16x1-256e_kinetics400-rgb

	32.45

	27.38

	72.68

	90.68

	link



	slowonly_r50_8xb16-8x8x1-256e_kinetics400-rgb

	32.45

	54.75

	74.82

	91.8

	link



	slowonly_r101_8xb16-8x8x1-196e_kinetics400-rgb

	60.36

	112.00

	76.28

	92.7

	link



	slowonly_imagenet-pretrained-r50_8xb16-4x16x1-steplr-150e_kinetics400-rgb

	32.45

	27.38

	74.83

	91.6

	link



	slowonly_imagenet-pretrained-r50_8xb16-8x8x1-steplr-150e_kinetics400-rgb

	32.45

	54.75

	75.96

	92.4

	link



	slowonly_r50-in1k-pre-nl-embedded-gaussian_8xb16-4x16x1-steplr-150e_kinetics400-rgb

	39.81

	43.23

	74.84

	91.41

	link



	slowonly_r50-in1k-pre-nl-embedded-gaussian_8xb16-8x8x1-steplr-150e_kinetics400-rgb

	39.81

	96.66

	76.35

	92.18

	link



	swin-tiny-p244-w877_in1k-pre_8xb8-amp-32x2x1-30e_kinetics400-rgb

	28.20

	88.00

	78.90

	93.77

	link



	swin-small-p244-w877_in1k-pre_8xb8-amp-32x2x1-30e_kinetics400-rgb

	49.80

	166.00

	80.54

	94.46

	link



	swin-base-p244-w877_in1k-pre_8xb8-amp-32x2x1-30e_kinetics400-rgb

	88.00

	282.00

	80.57

	94.49

	link



	swin-large-p244-w877_in22k-pre_8xb8-amp-32x2x1-30e_kinetics400-rgb

	197.00

	604.00

	83.46

	95.91

	link



	tanet_imagenet-pretrained-r50_8xb8-dense-1x1x8-100e_kinetics400-rgb

	25.60

	43.00

	76.25

	92.41

	link



	timesformer_divST_8xb8-8x32x1-15e_kinetics400-rgb

	

	196.00

	77.69

	93.45

	link



	timesformer_jointST_8xb8-8x32x1-15e_kinetics400-rgb

	

	180.00

	76.95

	93.28

	link



	timesformer_spaceOnly_8xb8-8x32x1-15e_kinetics400-rgb

	

	141.00

	76.93

	92.88

	link



	tin_kinetics400-pretrained-tsm-r50_1x1x8-50e_kinetics400-rgb

	24.36

	32.97

	71.86

	90.44

	link



	tpn-slowonly_r50_8xb8-8x8x1-150e_kinetics400-rgb

	91.50

	66.01

	74.20

	91.48

	link



	tpn-slowonly_imagenet-pretrained-r50_8xb8-8x8x1-150e_kinetics400-rgb

	91.50

	66.01

	76.74

	92.57

	link



	tsm_imagenet-pretrained-r50_8xb16-1x1x8-50e_kinetics400-rgb

	23.87

	32.88

	73.18

	90.56

	link



	tsm_imagenet-pretrained-r50_8xb16-1x1x8-100e_kinetics400-rgb

	23.87

	32.88

	73.22

	90.22

	link



	tsm_imagenet-pretrained-r50_8xb16-1x1x16-50e_kinetics400-rgb

	23.87

	65.75

	75.12

	91.55

	link



	tsm_imagenet-pretrained-r50_8xb16-dense-1x1x8-50e_kinetics400-rgb

	23.87

	32.88

	73.38

	90.78

	link



	tsm_imagenet-pretrained-r50-nl-embedded-gaussian_8xb16-1x1x8-50e_kinetics400-rgb

	31.68

	61.30

	74.34

	91.23

	link



	tsm_imagenet-pretrained-r50-nl-dot-product_8xb16-1x1x8-50e_kinetics400-rgb

	31.68

	61.30

	74.49

	91.15

	link



	tsm_imagenet-pretrained-r50-nl-gaussian_8xb16-1x1x8-50e_kinetics400-rgb

	28.00

	59.06

	73.66

	90.99

	link



	tsm_imagenet-pretrained-mobileone-s4_8xb16-1x1x16-50e_kinetics400-rgb

	13.72

	48.65

	74.38

	91.71

	link



	tsm_imagenet-pretrained-r101_8xb16-1x1x8-50e_sthv2-rgb

	2.74

	3.27

	63.70

	88.28

	link



	tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb

	24.33

	102.70

	72.83

	90.65

	link



	tsn_imagenet-pretrained-r50_8xb32-1x1x5-100e_kinetics400-rgb

	24.33

	102.70

	73.80

	91.21

	link



	tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb

	24.33

	102.70

	74.12

	91.34

	link



	tsn_imagenet-pretrained-r50_8xb32-dense-1x1x5-100e_kinetics400-rgb

	24.33

	102.70

	71.37

	89.67

	link



	tsn_imagenet-pretrained-r101_8xb32-1x1x8-100e_kinetics400-rgb

	43.32

	195.80

	75.89

	92.07

	link



	tsn_imagenet-pretrained-rn101-32x4d_8xb32-1x1x3-100e_kinetics400-rgb

	42.95

	200.30

	72.95

	90.36

	link



	tsn_imagenet-pretrained-dense161_8xb32-1x1x3-100e_kinetics400-rgb

	27.36

	194.60

	72.07

	90.15

	link



	tsn_imagenet-pretrained-swin-transformer_8xb32-1x1x3-100e_kinetics400-rgb

	87.15

	386.70

	77.03

	92.61

	link



	tsn_imagenet-pretrained-swin-transformer_32xb8-1x1x8-50e_kinetics400-rgb

	87.15

	386.70

	79.22

	94.2

	link



	tsn_imagenet-pretrained-mobileone-s4_8xb32-1x1x8-100e_kinetics400-rgb

	13.72

	76.00

	73.65

	91.32

	link



	tsn_imagenet-pretrained-r50_8xb32-1x1x8-50e_sthv2-rgb

	23.87

	102.70

	35.51

	67.09

	link



	tsn_imagenet-pretrained-r50_8xb32-1x1x16-50e_sthv2-rgb

	23.87

	102.70

	36.91

	68.77

	link



	uniformer-small_imagenet1k-pre_16x4x1_kinetics400-rgb

	

	

	80.90

	94.6

	link



	uniformer-base_imagenet1k-pre_16x4x1_kinetics400-rgb

	

	

	82.00

	95.0

	link



	uniformer-base_imagenet1k-pre_32x4x1_kinetics400-rgb

	

	

	83.10

	95.3

	link



	uniformerv2-base-p16-res224_clip_8xb32-u8_kinetics400-rgb

	

	

	84.30

	96.4

	link



	uniformerv2-base-p16-res224_clip-kinetics710-pre_8xb32-u8_kinetics400-rgb

	

	

	85.80

	97.1

	link



	uniformerv2-large-p14-res224_clip-kinetics710-pre_u8_kinetics400-rgb

	

	

	88.70

	98.1

	link



	uniformerv2-large-p14-res224_clip-kinetics710-pre_u16_kinetics400-rgb

	

	

	89.00

	98.2

	link



	uniformerv2-large-p14-res224_clip-kinetics710-pre_u32_kinetics400-rgb

	

	

	89.30

	98.2

	link



	uniformerv2-large-p14-res336_clip-kinetics710-pre_u32_kinetics400-rgb

	

	

	89.50

	98.4

	link



	uniformerv2-large-p14-res336_clip-kinetics710-pre_u32_kinetics700-rgb

	

	

	82.10

	96.0

	link



	vit-base-p16_videomae-k400-pre_16x4x1_kinetics-400

	

	

	81.30

	95.0

	link



	vit-large-p16_videomae-k400-pre_16x4x1_kinetics-400

	

	

	85.30

	96.7

	link



	vit-small-p16_videomaev2-vit-g-dist-k710-pre_16x4x1_kinetics-400

	

	

	83.60

	96.3

	link



	vit-base-p16_videomaev2-vit-g-dist-k710-pre_16x4x1_kinetics-400

	

	

	86.60

	97.3

	link



	x3d_s_13x6x1_facebook-kinetics400-rgb

	3.79

	2.97

	73.30

	

	link



	x3d_m_16x5x1_facebook-kinetics400-rgb

	3.79

	6.49

	76.40

	

	link



	tsn_r18_8xb320-64x1x1-100e_kinetics400-audio-feature

	11.40

	0.37

	13.70

	27.3

	link








UCF101



	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Top-5 (%)

	Readme





	c3d_sports1m-pretrained_8xb30-16x1x1-45e_ucf101-rgb

	78.40

	38.50

	83.08

	95.93

	link








SthV2



	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Top 1 Accuracy (efficient)

	Top-5 (%)

	Top 5 Accuracy (efficient)

	Readme





	mvit-small-p244_k400-pre_16xb16-u16-100e_sthv2-rgb_infer

	

	

	68.10

	

	91.00

	

	link



	mvit-small-p244_k400-pre_16xb16-u16-100e_sthv2-rgb

	34.40

	64.00

	68.20

	

	91.30

	

	link



	mvit-base-p244_u32_sthv2-rgb

	

	

	70.80

	

	92.70

	

	link



	mvit-large-p244_u40_sthv2-rgb

	

	

	73.20

	

	94.00

	

	link



	tin_imagenet-pretrained-r50_8xb6-1x1x8-40e_sthv2-rgb

	23.90

	32.96

	54.78

	

	82.18

	

	link



	trn_imagenet-pretrained-r50_8xb16-1x1x8-50e_sthv2-rgb

	

	42.94

	51.20

	47.65

	78.42

	76.27

	link



	tsm_imagenet-pretrained-r50_8xb16-1x1x8-50e_sthv2-rgb

	23.87

	32.88

	62.72

	

	87.70

	

	link



	tsm_imagenet-pretrained-r50_8xb16-1x1x16-50e_sthv2-rgb

	23.87

	65.75

	64.16

	

	88.61

	

	link



	tsm_imagenet-pretrained-r101_8xb16-1x1x8-50e_sthv2-rgb

	42.86

	62.66

	63.70

	

	88.28

	

	link








Kinetics-700



	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Top-5 (%)

	Readme





	slowonly_imagenet-pretrained-r50_16xb16-4x16x1-steplr-150e_kinetics700-rgb

	32.45

	27.38

	65.18

	86.05

	link



	slowonly_imagenet-pretrained-r50_16xb16-8x8x1-steplr-150e_kinetics700-rgb

	32.45

	54.75

	66.93

	87.47

	link



	swin-large-p244-w877_in22k-pre_16xb8-amp-32x2x1-30e_kinetics700-rgb

	197.00

	604.00

	75.92

	92.72

	link



	uniformerv2-base-p16-res224_clip-pre_8xb32-u8_kinetics700-rgb

	

	

	75.90

	92.90

	link



	uniformerv2-base-p16-res224_clip-kinetics710-pre_8xb32-u8_kinetics700-rgb

	

	

	76.30

	92.90

	link



	uniformerv2-large-p14-res224_clip-kinetics710-pre_u8_kinetics700-rgb

	

	

	80.80

	95.20

	link



	uniformerv2-large-p14-res224_clip-kinetics710-pre_u16_kinetics700-rgb

	

	

	81.20

	95.60

	link



	uniformerv2-large-p14-res224_clip-kinetics710-pre_u32_kinetics700-rgb

	

	

	81.40

	95.70

	link








Kinetics-710



	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Top-5 (%)

	Readme





	slowonly_imagenet-pretrained-r50_32xb8-8x8x1-steplr-150e_kinetics710-rgb

	32.45

	54.75

	72.39

	90.60

	link



	swin-small-p244-w877_in1k-pre_32xb4-amp-32x2x1-30e_kinetics710-rgb

	197.00

	604.00

	76.90

	92.96

	link








SthV1



	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Top 1 Accuracy (efficient)

	Top-5 (%)

	Top 5 Accuracy (efficient)

	Readme





	tanet_imagenet-pretrained-r50_8xb8-1x1x8-50e_sthv1-rgb

	25.10

	43.10

	49.71

	46.98

	77.43

	75.75

	link



	tanet_imagenet-pretrained-r50_8xb6-1x1x16-50e_sthv1-rgb

	25.10

	86.10

	50.95

	48.24

	79.28

	78.16

	link



	tin_imagenet-pretrained-r50_8xb6-1x1x8-40e_sthv1-rgb

	23.90

	32.96

	38.68

	

	68.55

	

	link



	tpn-tsm_imagenet-pretrained-r50_8xb8-1x1x8-150e_sthv1-rgb

	82.45

	54.20

	51.87

	

	79.67

	

	link



	trn_imagenet-pretrained-r50_8xb16-1x1x8-50e_sthv1-rgb

	

	42.94

	33.65

	31.6

	62.22

	60.15

	link








Kinetics-600



	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Top-5 (%)

	Readme





	uniformerv2-base-p16-res224_clip-kinetics710-pre_8xb32-u8_kinetics600-rgb

	

	

	86.40

	97.30

	link



	uniformerv2-large-p14-res224_clip-kinetics710-pre_u8_kinetics600-rgb

	

	

	89.00

	98.30

	link



	uniformerv2-large-p14-res224_clip-kinetics710-pre_u16_kinetics600-rgb

	

	

	89.40

	98.30

	link



	uniformerv2-large-p14-res224_clip-kinetics710-pre_u32_kinetics600-rgb

	

	

	89.20

	98.30

	link



	uniformerv2-large-p14-res336_clip-kinetics710-pre_u32_kinetics600-rgb

	

	

	89.80

	98.50

	link








Moments in Time V1



	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Top-5 (%)

	Readme





	uniformerv2-base-p16-res224_clip-kinetics710-kinetics-k400-pre_16xb32-u8_mitv1-rgb

	

	

	42.30

	71.50

	link



	uniformerv2-large-p16-res224_clip-kinetics710-kinetics-k400-pre_u8_mitv1-rgb

	

	

	47.00

	76.10

	link



	uniformerv2-large-p16-res336_clip-kinetics710-kinetics-k400-pre_u8_mitv1-rgb

	

	

	47.70

	76.80

	link









Action Detection


AVA v2.1



	Model

	Params (M)

	Flops (G)

	mAP

	Readme





	slowfast-acrn_kinetics400-pretrained-r50_8xb8-8x8x1-cosine-10e_ava21-rgb

	

	

	27.65

	link



	slowonly-lfb-nl_kinetics400-pretrained-r50_8xb12-4x16x1-20e_ava21-rgb

	

	

	24.11

	link



	slowonly-lfb-max_kinetics400-pretrained-r50_8xb12-4x16x1-20e_ava21-rgb

	

	

	22.15

	link



	slowfast_kinetics400-pretrained-r50_8xb16-4x16x1-20e_ava21-rgb

	

	

	24.32

	link



	slowfast_kinetics400-pretrained-r50-context_8xb16-4x16x1-20e_ava21-rgb

	

	

	25.34

	link



	slowfast_kinetics400-pretrained-r50_8xb8-8x8x1-20e_ava21-rgb

	

	

	25.80

	link



	slowonly_kinetics400-pretrained-r50_8xb16-4x16x1-20e_ava21-rgb

	

	

	20.72

	link



	slowonly_kinetics700-pretrained-r50_8xb16-4x16x1-20e_ava21-rgb

	

	

	22.77

	link



	slowonly_kinetics400-pretrained-r50-nl_8xb16-4x16x1-20e_ava21-rgb

	

	

	21.55

	link



	slowonly_kinetics400-pretrained-r50-nl_8xb16-8x8x1-20e_ava21-rgb

	

	

	23.77

	link



	slowonly_kinetics400-pretrained-r101_8xb16-8x8x1-20e_ava21-rgb

	

	

	24.83

	link








AVA v2.2



	Model

	Params (M)

	Flops (G)

	mAP

	Readme





	slowfast-acrn_kinetics400-pretrained-r50_8xb8-8x8x1-cosine-10e_ava22-rgb

	

	

	27.71

	link



	slowfast_kinetics400-pretrained-r50_8xb6-8x8x1-cosine-10e_ava22-rgb

	

	

	25.90

	link



	slowfast_kinetics400-pretrained-r50-temporal-max_8xb6-8x8x1-cosine-10e_ava22-rgb

	

	

	26.41

	link



	slowfast_r50-k400-pre-temporal-max-focal-alpha3-gamma1_8xb6-8x8x1-cosine-10e_ava22-rgb

	

	

	26.65

	link



	vit-base-p16_videomae-k400-pre_8xb8-16x4x1-20e-adamw_ava-kinetics-rgb

	

	

	33.60

	link



	vit-large-p16_videomae-k400-pre_8xb8-16x4x1-20e-adamw_ava-kinetics-rgb

	

	

	38.70

	link








MultiSports



	Model

	Params (M)

	Flops (G)

	f-mAP

	Readme





	slowfast_kinetics400-pretrained-r50_8xb16-4x16x1-8e_multisports-rgb

	

	

	36.88

	link



	slowonly_kinetics400-pretrained-r50_8xb16-4x16x1-8e_multisports-rgb

	

	

	26.40

	link









Skeleton-based Action Recognition


NTU60-XSub-2D



	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Readme





	2s-agcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-2d

	3.50

	4.40

	88.60

	link



	2s-agcn_8xb16-bone-u100-80e_ntu60-xsub-keypoint-2d

	3.50

	4.40

	91.59

	link



	2s-agcn_8xb16-joint-motion-u100-80e_ntu60-xsub-keypoint-2d

	3.50

	4.40

	88.02

	link



	2s-agcn_8xb16-bone-motion-u100-80e_ntu60-xsub-keypoint-2d

	3.50

	4.40

	88.82

	link



	stgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-2d

	3.10

	3.80

	88.95

	link



	stgcn_8xb16-bone-u100-80e_ntu60-xsub-keypoint-2d

	3.10

	3.80

	91.69

	link



	stgcn_8xb16-joint-motion-u100-80e_ntu60-xsub-keypoint-2d

	3.10

	3.80

	86.90

	link



	stgcn_8xb16-bone-motion-u100-80e_ntu60-xsub-keypoint-2d

	3.10

	3.80

	87.86

	link



	stgcnpp_8xb16-joint-u100-80e_ntu60-xsub-keypoint-2d

	1.39

	1.95

	89.29

	link



	stgcnpp_8xb16-bone-u100-80e_ntu60-xsub-keypoint-2d

	1.39

	1.95

	92.30

	link



	stgcnpp_8xb16-joint-motion-u100-80e_ntu60-xsub-keypoint-2d

	1.39

	1.95

	87.30

	link



	stgcnpp_8xb16-bone-motion-u100-80e_ntu60-xsub-keypoint-2d

	1.39

	1.95

	88.76

	link








NTU60-XSub-3D



	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Readme





	2s-agcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-3d

	3.50

	6.50

	88.26

	link



	2s-agcn_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d

	3.50

	6.50

	89.22

	link



	2s-agcn_8xb16-joint-motion-u100-80e_ntu60-xsub-keypoint-3d

	3.50

	6.50

	86.73

	link



	2s-agcn_8xb16-bone-motion-u100-80e_ntu60-xsub-keypoint-3d

	3.50

	6.50

	86.41

	link



	stgcn_8xb16-joint-u100-80e_ntu60-xsub-keypoint-3d

	3.10

	5.70

	88.11

	link



	stgcn_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d

	3.10

	5.70

	88.76

	link



	stgcn_8xb16-joint-motion-u100-80e_ntu60-xsub-keypoint-3d

	3.10

	5.70

	86.06

	link



	stgcn_8xb16-bone-motion-u100-80e_ntu60-xsub-keypoint-3d

	3.10

	5.70

	85.49

	link



	stgcnpp_8xb16-joint-u100-80e_ntu60-xsub-keypoint-3d

	1.40

	2.96

	89.14

	link



	stgcnpp_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d

	1.40

	2.96

	90.21

	link



	stgcnpp_8xb16-joint-motion-u100-80e_ntu60-xsub-keypoint-3d

	1.40

	2.96

	86.67

	link



	stgcnpp_8xb16-bone-motion-u100-80e_ntu60-xsub-keypoint-3d

	1.40

	2.96

	87.45

	link








FineGYM



	Model

	Params (M)

	Flops (G)

	mean Top 1 Accuracy

	Readme





	slowonly_r50_8xb16-u48-240e_gym-keypoint

	2.00

	20.60

	93.50

	link



	slowonly_r50_8xb16-u48-240e_gym-limb

	2.00

	20.60

	93.60

	link








NTU60-XSub



	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Readme





	slowonly_r50_8xb16-u48-240e_ntu60-xsub-keypoint

	2.00

	20.60

	93.60

	link



	slowonly_r50_8xb16-u48-240e_ntu60-xsub-limb

	2.00

	20.60

	93.50

	link








HMDB51



	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Readme





	slowonly_kinetics400-pretrained-r50_8xb16-u48-120e_hmdb51-split1-keypoint

	3.00

	14.60

	69.60

	link








UCF101



	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Readme





	slowonly_kinetics400-pretrained-r50_8xb16-u48-120e_ucf101-split1-keypoint

	3.10

	14.60

	86.80

	link








Kinetic400



	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Readme





	slowonly_r50_8xb32-u48-240e_k400-keypoint

	3.20

	19.10

	47.40

	link








NTU120-XSub-2D



	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Readme





	stgcn_8xb16-joint-u100-80e_ntu120-xsub-keypoint-2d

	3.10

	3.80

	83.19

	link



	stgcn_8xb16-bone-u100-80e_ntu120-xsub-keypoint-2d

	3.10

	3.80

	83.36

	link



	stgcn_8xb16-joint-motion-u100-80e_ntu120-xsub-keypoint-2d

	3.10

	3.80

	78.87

	link



	stgcn_8xb16-bone-motion-u100-80e_ntu120-xsub-keypoint-2d

	3.10

	3.80

	79.55

	link








NTU120-XSub-3D



	Model

	Params (M)

	Flops (G)

	Top-1 (%)

	Readme





	stgcn_8xb16-joint-u100-80e_ntu120-xsub-keypoint-3d

	3.10

	5.70

	82.15

	link



	stgcn_8xb16-bone-u100-80e_ntu120-xsub-keypoint-3d

	3.10

	5.70

	84.28

	link



	stgcn_8xb16-joint-motion-u100-80e_ntu120-xsub-keypoint-3d

	3.10

	5.70

	78.93

	link



	stgcn_8xb16-bone-motion-u100-80e_ntu120-xsub-keypoint-3d

	3.10

	5.70

	80.02

	link









Video Retrieval


MSRVTT



	Model

	Params (M)

	Flops (G)

	MdR

	MnR

	Recall@1

	Recall@10

	Recall@5

	Readme





	clip4clip_vit-base-p32-res224-clip-pre_8xb16-u12-5e_msrvtt-9k-rgb

	

	

	2.00

	16.80

	43.10

	78.90

	69.40

	link









Temporal Action Localization


ActivityNet v1.3



	Model

	Params (M)

	Flops (G)

	AR@1

	AR@10

	AR@100

	AR@5

	AUC

	Readme





	bmn_2xb8-400x100-9e_activitynet-feature

	

	

	32.89

	56.64

	75.29

	49.43

	67.25

	link



	bsn_400x100_1xb16_20e_activitynet_feature (cuhk_mean_100)

	

	

	32.71

	55.28

	74.27

	48.43

	66.26

	link
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Action Recognition Models


C2D


Non-local Neural Networks [https://arxiv.org/abs/1711.07971]


Abstract


Both convolutional and recurrent operations are building blocks that process one local neighborhood at a time. In this paper, we present non-local operations as a generic family of building blocks for capturing long-range dependencies. Inspired by the classical non-local means method in computer vision, our non-local operation computes the response at a position as a weighted sum of the features at all positions. This building block can be plugged into many computer vision architectures. On the task of video classification, even without any bells and whistles, our non-local models can compete or outperform current competition winners on both Kinetics and Charades datasets. In static image recognition, our non-local models improve object detection/segmentation and pose estimation on the COCO suite of tasks.
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Audio-based Action Recognition Models


ResNet for Audio

Audiovisual SlowFast Networks for Video Recognition [https://arxiv.org/abs/2001.08740]



Abstract


We present Audiovisual SlowFast Networks, an architecture for integrated audiovisual perception. AVSlowFast has Slow and Fast visual pathways that are deeply integrated with a Faster Audio pathway to model vision and sound in a unified representation. We fuse audio and visual features at multiple layers, enabling audio to contribute to the formation of hierarchical audiovisual concepts. To overcome training difficulties that arise from different learning dynamics for audio and visual modalities, we introduce DropPathway, which randomly drops the Au- dio pathway during training as an effective regularization technique. Inspired by prior studies in neuroscience, we perform hierarchical audiovisual synchronization to learn joint audiovisual features. We report state-of-the-art results on six video action classification and detection datasets, perform detailed ablation studies, and show the generalization of AVSlowFast to learn self-supervised audiovisual features.
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Skeleton-based Action Recognition Models


AGCN

Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition [https://openaccess.thecvf.com/content_CVPR_2019/html/Shi_Two-Stream_Adaptive_Graph_Convolutional_Networks_for_Skeleton-Based_Action_Recognition_CVPR_2019_paper.html]



Abstract


In skeleton-based action recognition, graph convolutional networks (GCNs), which model the human body skeletons as spatiotemporal graphs, have achieved remarkable performance. However, in existing GCN-based methods, the topology of the graph is set manually, and it is fixed over all layers and input samples. This may not be optimal for the hierarchical GCN and diverse samples in action recognition tasks. In addition, the second-order information (the lengths and directions of bones) of the skeleton data, which is naturally more informative and discriminative for action recognition, is rarely investigated in existing methods. In this work, we propose a novel two-stream adaptive graph convolutional network (2s-AGCN) for skeleton-based action recognition. The topology of the graph in our model can be either uniformly or individually learned by the BP algorithm in an end-to-end manner. This data-driven method increases the flexibility of the model for graph construction and brings more generality to adapt to various data samples. Moreover, a two-stream framework is proposed to model both the first-order and the second-order information simultaneously, which shows notable improvement for the recognition accuracy. Extensive experiments on the two large-scale datasets, NTU-RGBD and Kinetics-Skeleton, demonstrate that the performance of our model exceeds the state-of-the-art with a significant margin.



  
    
    

    Spatio Temporal Action Detection Models
    

    

    

    

    

    
 
  

    
      
          
            
  
Spatio Temporal Action Detection Models


ACRN

Actor-centric relation network [https://openaccess.thecvf.com/content_ECCV_2018/html/Chen_Sun_Actor-centric_Relation_Network_ECCV_2018_paper.html]



Abstract


Current state-of-the-art approaches for spatio-temporal action localization rely on detections at the frame level and model temporal context with 3D ConvNets. Here, we go one step further and model spatio-temporal relations to capture the interactions between human actors, relevant objects and scene elements essential to differentiate similar human actions. Our approach is weakly supervised and mines the relevant elements automatically with an actor-centric relational network (ACRN). ACRN computes and accumulates pair-wise relation information from actor and global scene features, and generates relation features for action classification. It is implemented as neural networks and can be trained jointly with an existing action detection system. We show that ACRN outperforms alternative approaches which capture relation information, and that the proposed framework improves upon the state-of-the-art performance on JHMDB and AVA. A visualization of the learned relation features confirms that our approach is able to attend to the relevant relations for each action.
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Video Retrieval Models


CLIP4Clip

CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval [https://arxiv.org/abs/2104.08860]



Abstract


Video-text retrieval plays an essential role in multi-modal research and has been widely used in many real-world web applications. The CLIP (Contrastive Language-Image Pre-training), an image-language pre-training model, has demonstrated the power of visual concepts learning from web collected image-text datasets. In this paper, we propose a CLIP4Clip model to transfer the knowledge of the CLIP model to video-language retrieval in an end-to-end manner. Several questions are investigated via empirical studies: 1) Whether image feature is enough for video-text retrieval? 2) How a post-pretraining on a large-scale video-text dataset based on the CLIP affect the performance? 3) What is the practical mechanism to model temporal dependency between video frames? And 4) The Hyper-parameters sensitivity of the model on video-text retrieval task. Extensive experimental results present that the CLIP4Clip model transferred from the CLIP can achieve SOTA results on various video-text retrieval datasets, including MSR-VTT, MSVC, LSMDC, ActivityNet, and DiDeMo.
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Action Localization Models


BMN

Bmn: Boundary-matching network for temporal action proposal generation [https://openaccess.thecvf.com/content_ICCV_2019/html/Lin_BMN_Boundary-Matching_Network_for_Temporal_Action_Proposal_Generation_ICCV_2019_paper.html]



Abstract


Temporal action proposal generation is an challenging and promising task which aims to locate temporal regions in real-world videos where action or event may occur. Current bottom-up proposal generation methods can generate proposals with precise boundary, but cannot efficiently generate adequately reliable confidence scores for retrieving proposals. To address these difficulties, we introduce the Boundary-Matching (BM) mechanism to evaluate confidence scores of densely distributed proposals, which denote a proposal as a matching pair of starting and ending boundaries and combine all densely distributed BM pairs into the BM confidence map. Based on BM mechanism, we propose an effective, efficient and end-to-end proposal generation method, named Boundary-Matching Network (BMN), which generates proposals with precise temporal boundaries as well as reliable confidence scores simultaneously. The two-branches of BMN are jointly trained in an unified framework. We conduct experiments on two challenging datasets: THUMOS-14 and ActivityNet-1.3, where BMN shows significant performance improvement with remarkable efficiency and generalizability. Further, combining with existing action classifier, BMN can achieve state-of-the-art temporal action detection performance.
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Dataset Zoo Summary

In this page, we list all datasets we support. You can click the link to jump to the corresponding dataset pages.


All supported datasets


	Number of datasets: 25


	HVU


	MSR-VTT Retrieval/ Video Question-Answering Dataset


	HACS Segments


	Kinetics-[400/600/700]


	Jester


	Kinetics-710


	Something-Something V2


	Diving48


	Multisports


	Something-Something V1


	Moments in Time


	AVA


	JHMDB


	ActivityNet


	Skeleton Dataset


	Multi-Moments in Time


	GYM


	HMDB51


	UCF-101


	UCF101-24


	OmniSource


	Video Retrieval Datasets


	AVA-Kinetics


	AVA


	THUMOS’14
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Preparing ActivityNet


Introduction


@article{Heilbron2015ActivityNetAL,
  title={ActivityNet: A large-scale video benchmark for human activity understanding},
  author={Fabian Caba Heilbron and Victor Escorcia and Bernard Ghanem and Juan Carlos Niebles},
  journal={2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2015},
  pages={961-970}
}





For basic dataset information, please refer to the official website [http://activity-net.org/].
For action detection, you can either use the ActivityNet rescaled feature provided in this repo [https://github.com/wzmsltw/BSN-boundary-sensitive-network#code-and-data-preparation] or extract feature with mmaction2 (which has better performance).
We release both pipeline.
Before we start, please make sure that current working directory is $MMACTION2/tools/data/activitynet/.



Option 1: Use the ActivityNet rescaled feature provided in this repo [https://github.com/wzmsltw/BSN-boundary-sensitive-network#code-and-data-preparation]


Step 1. Download Annotations

First of all, you can run the following script to download annotation files.

bash download_feature_annotations.sh







Step 2. Prepare Videos Features

Then, you can run the following script to download activitynet features.

bash download_features.sh







Step 3. Process Annotation Files

Next, you can run the following script to process the downloaded annotation files for training and testing.
It first merges the two annotation files together and then separates the annoations by train, val and test.

python process_annotations.py








Option 2: Extract ActivityNet feature using MMAction2 with all videos provided in official website [http://activity-net.org/]


Step 1. Download Annotations

First of all, you can run the following script to download annotation files.

bash download_annotations.sh







Step 2. Prepare Videos

Then, you can run the following script to prepare videos.
The codes are adapted from the official crawler [https://github.com/activitynet/ActivityNet/tree/master/Crawler/Kinetics]. Note that this might take a long time.

bash download_videos.sh





Since some videos in the ActivityNet dataset might be no longer available on YouTube, official website [http://activity-net.org/] has made the full dataset available on Google and Baidu drives.
To accommodate missing data requests, you can fill in this request form [https://docs.google.com/forms/d/e/1FAIpQLSeKaFq9ZfcmZ7W0B0PbEhfbTHY41GeEgwsa7WobJgGUhn4DTQ/viewform] provided in official download page [http://activity-net.org/download.html] to have a 7-day-access to download the videos from the drive folders.

We also provide download steps for annotations from BSN repo [https://github.com/wzmsltw/BSN-boundary-sensitive-network#code-and-data-preparation]

bash download_bsn_videos.sh





For this case, the downloading scripts update the annotation file after downloading to make sure every video in it exists.



Step 3. Extract RGB and Flow

Before extracting, please refer to install.md [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/get_started/installation.md] for installing denseflow [https://github.com/open-mmlab/denseflow].

Use following scripts to extract both RGB and Flow.

bash extract_frames.sh





The command above can generate images with new short edge 256. If you want to generate images with short edge 320 (320p), or with fix size 340x256, you can change the args --new-short 256 to --new-short 320 or --new-width 340 --new-height 256.
More details can be found in prepare dataset [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/user_guides/prepare_dataset.md]



Step 4. Generate File List for ActivityNet Finetuning

With extracted frames, you can generate video-level or clip-level lists of rawframes, which can be used for ActivityNet Finetuning.

python generate_rawframes_filelist.py







Step 5. Finetune TSN models on ActivityNet

You can use ActivityNet configs in configs/recognition/tsn to finetune TSN models on ActivityNet.
You need to use Kinetics models for pretraining.
Both RGB models and Flow models are supported.



Step 6. Extract ActivityNet Feature with finetuned ckpts

After finetuning TSN on ActivityNet, you can use it to extract both RGB and Flow feature.

python ../../misc/clip_feature_extraction.py tsn_extract_rgb_feat_config.py \
  /path/to/rgb_checkpoint.pth ../../../data/ActivityNet/rgb_tarin_feat.pkl \
  --video-list ../../../data/ActivityNet/anet_train_video.txt \
  --video-root ../../../data/ActivityNet/rawframes \
  --dump-score

python ../../misc/clip_feature_extraction.py tsn_extract_rgb_feat_config.py \
  path/to/rgb_checkpoint.pth ../../../data/ActivityNet/rgb_val_feat.pkl \
  --video-list ../../../data/ActivityNet/anet_val_video.txt \
  --video-root ../../../data/ActivityNet/rawframes \
  --dump-score

python ../../misc/clip_feature_extraction.py tsn_extract_flow_feat_config.py \
  /path/to/flow_checkpoint.pth ../../../data/ActivityNet/flow_tarin_feat.pkl \
  --video-list ../../../data/ActivityNet/anet_train_video.txt \
  --video-root ../../../data/ActivityNet/rawframes \
  --dump-score

python ../../misc/clip_feature_extraction.py tsn_extract_flow_feat_config.py \
  /path/to/flow_checkpoint.pth ../../../data/ActivityNet/flow_val_feat.pkl \
  --video-list ../../../data/ActivityNet/anet_val_video.txt \
  --video-root ../../../data/ActivityNet/rawframes \
  --dump-score





After feature extraction, you can use our post processing scripts to concat RGB and Flow feature, generate the 100-t X 400-d feature for Action Detection.

python activitynet_feature_postprocessing.py --rgb ../../../data/ActivityNet/rgb_feat --flow ../../../data/ActivityNet/flow_feat --dest ../../../data/ActivityNet/mmaction_feat








Final Step. Check Directory Structure

After the whole data pipeline for ActivityNet preparation,
you will get the features, videos, frames and annotation files.

In the context of the whole project (for ActivityNet only), the folder structure will look like:

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── ActivityNet

(if Option 1 used)
│   │   ├── anet_anno_{train,val,test,full}.json
│   │   ├── anet_anno_action.json
│   │   ├── video_info_new.csv
│   │   ├── activitynet_feature_cuhk
│   │   │   ├── csv_mean_100
│   │   │   │   ├── v___c8enCfzqw.csv
│   │   │   │   ├── v___dXUJsj3yo.csv
│   │   │   |   ├── ..

(if Option 2 used)
│   │   ├── anet_train_video.txt
│   │   ├── anet_val_video.txt
│   │   ├── anet_train_clip.txt
│   │   ├── anet_val_clip.txt
│   │   ├── activity_net.v1-3.min.json
│   │   ├── mmaction_feat
│   │   │   ├── v___c8enCfzqw.csv
│   │   │   ├── v___dXUJsj3yo.csv
│   │   │   ├── ..
│   │   ├── rawframes
│   │   │   ├── v___c8enCfzqw
│   │   │   │   ├── img_00000.jpg
│   │   │   │   ├── flow_x_00000.jpg
│   │   │   │   ├── flow_y_00000.jpg
│   │   │   │   ├── ..
│   │   │   ├── ..






For training and evaluating on ActivityNet, please refer to Training and Test Tutorial [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/user_guides/train_test.md].
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Preparing AVA


Introduction


@inproceedings{gu2018ava,
  title={Ava: A video dataset of spatio-temporally localized atomic visual actions},
  author={Gu, Chunhui and Sun, Chen and Ross, David A and Vondrick, Carl and Pantofaru, Caroline and Li, Yeqing and Vijayanarasimhan, Sudheendra and Toderici, George and Ricco, Susanna and Sukthankar, Rahul and others},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={6047--6056},
  year={2018}
}





For basic dataset information, please refer to the official website [https://research.google.com/ava/index.html].
Before we start, please make sure that the directory is located at $MMACTION2/tools/data/ava/.



Step 1. Prepare Annotations

First of all, you can run the following script to prepare annotations.

bash download_annotations.sh





This command will download ava_v2.1.zip for AVA v2.1 annotation. If you need the AVA v2.2 annotation, you can try the following script.

VERSION=2.2 bash download_annotations.sh







Step 2. Prepare Videos

Then, use the following script to prepare videos. The codes are adapted from the official crawler [https://github.com/cvdfoundation/ava-dataset].
Note that this might take a long time.

bash download_videos.sh





Or you can use the following command to downloading AVA videos in parallel using a python script.

bash download_videos_parallel.sh





Note that if you happen to have sudoer or have GNU parallel [https://www.gnu.org/software/parallel/] on your machine,
you can speed up the procedure by downloading in parallel.

# sudo apt-get install parallel
bash download_videos_gnu_parallel.sh







Step 3. Cut Videos

Cut each video from its 15th to 30th minute and make them at 30 fps.

bash cut_videos.sh







Step 4. Extract RGB and Flow

Before extracting, please refer to install.md [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/get_started/installation.md] for installing denseflow [https://github.com/open-mmlab/denseflow].

If you have plenty of SSD space, then we recommend extracting frames there for better I/O performance. And you can run the following script to soft link the extracted frames.

# execute these two line (Assume the SSD is mounted at "/mnt/SSD/")
mkdir /mnt/SSD/ava_extracted/
ln -s /mnt/SSD/ava_extracted/ ../data/ava/rawframes/





If you only want to play with RGB frames (since extracting optical flow can be time-consuming), consider running the following script to extract RGB-only frames using denseflow.

bash extract_rgb_frames.sh





If you didn’t install denseflow, you can still extract RGB frames using ffmpeg by the following script.

bash extract_rgb_frames_ffmpeg.sh





If both are required, run the following script to extract frames.

bash extract_frames.sh







Step 5. Fetch Proposal Files

The scripts are adapted from FAIR’s Long-Term Feature Banks [https://github.com/facebookresearch/video-long-term-feature-banks].

Run the following scripts to fetch the pre-computed proposal list.

bash fetch_ava_proposals.sh







Step 6. Folder Structure

After the whole data pipeline for AVA preparation.
you can get the rawframes (RGB + Flow), videos and annotation files for AVA.

In the context of the whole project (for AVA only), the minimal folder structure will look like:
(minimal means that some data are not necessary: for example, you may want to evaluate AVA using the original video format.)

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── ava
│   │   ├── annotations
│   │   |   ├── ava_dense_proposals_train.FAIR.recall_93.9.pkl
│   │   |   ├── ava_dense_proposals_val.FAIR.recall_93.9.pkl
│   │   |   ├── ava_dense_proposals_test.FAIR.recall_93.9.pkl
│   │   |   ├── ava_train_v2.1.csv
│   │   |   ├── ava_val_v2.1.csv
│   │   |   ├── ava_train_excluded_timestamps_v2.1.csv
│   │   |   ├── ava_val_excluded_timestamps_v2.1.csv
│   │   |   ├── ava_action_list_v2.1_for_activitynet_2018.pbtxt
│   │   ├── videos
│   │   │   ├── 053oq2xB3oU.mkv
│   │   │   ├── 0f39OWEqJ24.mp4
│   │   │   ├── ...
│   │   ├── videos_15min
│   │   │   ├── 053oq2xB3oU.mkv
│   │   │   ├── 0f39OWEqJ24.mp4
│   │   │   ├── ...
│   │   ├── rawframes
│   │   │   ├── 053oq2xB3oU
|   │   │   │   ├── img_00001.jpg
|   │   │   │   ├── img_00002.jpg
|   │   │   │   ├── ...





For training and evaluating on AVA, please refer to Training and Test Tutorial [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/user_guides/train_test.md].



Reference


	O. Tange (2018): GNU Parallel 2018, March 2018, https://doi.org/10.5281/zenodo.1146014
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Preparing AVA-Kinetics


Introduction


@article{li2020ava,
  title={The ava-kinetics localized human actions video dataset},
  author={Li, Ang and Thotakuri, Meghana and Ross, David A and Carreira, Jo{\~a}o and Vostrikov, Alexander and Zisserman, Andrew},
  journal={arXiv preprint arXiv:2005.00214},
  year={2020}
}





For basic dataset information, please refer to the official website [https://research.google.com/ava/index.html].
AVA-Kinetics dataset is a crossover between the AVA Actions and Kinetics datasets. You may want to first prepare the AVA datasets. In this file, we provide commands to prepare the Kinetics part and merge the two parts together.

For model training, we will keep reading from raw frames for the AVA part, but read from videos using decord for the Kinetics part to accelerate training.

Before we start, please make sure that the directory is located at $MMACTION2/tools/data/ava_kinetics/.



Step 1. Prepare the Kinetics700 dataset

The Kinetics part of the AVA-Kinetics dataset are sampled from the Kinetics-700 dataset.

It is best if you have prepared the Kinetics-700 dataset (only videos required) following
Preparing Kinetics [https://github.com/open-mmlab/mmaction2/tree/master/tools/data/kinetics]. We will also have alternative method to prepare these videos if you do not have enough storage (coming soon).

We will need the videos of this dataset ($MMACTION2/data/kinetics700/videos_train) and the videos file list ($MMACTION2/data/kinetics700/kinetics700_train_list_videos.txt), which is generated by Step 4 in Preparing Kinetics [https://github.com/open-mmlab/mmaction2/tree/master/tools/data/kinetics#step-4-generate-file-list]

The format of the file list should be:

Path_to_video_1 label_1\n
Path_to_video_2 label_2\n
...
Path_to_video_n label_n\n





The timestamp (start and end of the video) must be contained. For example:

class602/o3lCwWyyc_s_000012_000022.mp4 602\n





It means that this video clip is the 12th to 22nd seconds of the original video. It is okay if some videos are missing, and we will ignore them in the next steps.



Step 2. Download Annotations

Download the annotation tar file (recall that the directory should be located at $MMACTION2/tools/data/ava_kinetics/).

wget https://storage.googleapis.com/deepmind-media/Datasets/ava_kinetics_v1_0.tar.gz
tar xf ava_kinetics_v1_0.tar.gz && rm ava_kinetics_v1_0.tar.gz





You should have the ava_kinetics_v1_0 folder at $MMACTION2/tools/data/ava_kinetics/.



Step 3. Cut Videos

Use cut_kinetics.py to find the desired videos from the Kinetics-700 dataset and trim them to contain only annotated clips. Currently we only use the train set of the Kinetics part to improve training. Validation on the Kinetics part will come soon.

Here is the script:

python3 cut_kinetics.py --avakinetics_anotation=$AVAKINETICS_ANOTATION \
                        --kinetics_list=$KINETICS_LIST \
                        --avakinetics_root=$AVAKINETICS_ROOT \
                        [--num_workers=$NUM_WORKERS ]





Arguments:


	avakinetics_anotation: the directory to ava-kinetics anotations. Defaults to ./ava_kinetics_v1_0.


	kinetics_list: the path to the videos file list as mentioned in Step 1. If you have prepared the Kinetics700 dataset following mmaction2, it should be $MMACTION2/data/kinetics700/kinetics700_train_list_videos.txt.


	avakinetics_root: the directory to save the ava-kinetics dataset. Defaults to $MMACTION2/data/ava_kinetics.


	num_workers: number of workers used to cut videos. Defaults to -1 and use all available cpus.




There should be about 100k videos. It is OK if some videos are missing and we will ignore them in the next steps.



Step 4. Extract RGB Frames

This step is similar to Step 4 in Preparing AVA [https://github.com/open-mmlab/mmaction2/tree/main/tools/data/ava#step-4-extract-rgb-and-flow].

Here we provide a script to extract RGB frames using ffmpeg:

python3 extract_rgb_frames.py --avakinetics_root=$AVAKINETICS_ROOT \
                              [--num_workers=$NUM_WORKERS ]





Arguments:


	avakinetics_root: the directory to save the ava-kinetics dataset. Defaults to $MMACTION2/data/ava_kinetics.


	num_workers: number of workers used to extract frames. Defaults to -1 and use all available cpus.




If you have installed denseflow, you can also use build_rawframes.py to extract RGB frames:

python3 ../build_rawframes.py ../../../data/ava_kinetics/videos/ ../../../data/ava_kinetics/rawframes/ --task rgb --level 1 --mixed-ext







Step 5. Prepare Annotations

Use prepare_annotation.py to prepare the training annotations. It will generate a kinetics_train.csv file containning the spatial-temporal annotations for the Kinetics part, localting at $AVAKINETICS_ROOT.

Here is the script:

python3 prepare_annotation.py --avakinetics_anotation=$AVAKINETICS_ANOTATION \
                              --avakinetics_root=$AVAKINETICS_ROOT \
                              [--num_workers=$NUM_WORKERS]





Arguments:


	avakinetics_anotation: the directory to ava-kinetics anotations. Defaults to ./ava_kinetics_v1_0.


	avakinetics_root: the directory to save the ava-kinetics dataset. Defaults to $MMACTION2/data/ava_kinetics.


	num_workers: number of workers used to prepare annotations. Defaults to -1 and use all available cpus.






Step 6. Fetch Proposal Files

The pre-computed proposals for AVA dataset are provided by FAIR’s Long-Term Feature Banks [https://github.com/facebookresearch/video-long-term-feature-banks]. For the Kinetics part, we use Cascade R-CNN X-101-64x4d-FPN from mmdetection [https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_1x_coco/cascade_rcnn_x101_64x4d_fpn_1x_coco_20200515_075702-43ce6a30.pth] to fetch the proposals. Here is the script:

python3 fetch_proposal.py --avakinetics_root=$AVAKINETICS_ROOT \
                          --datalist=$DATALIST \
                          --picklepath=$PICKLEPATH \
                          [--config=$CONFIG ] \
                          [--checkpoint=$CHECKPOINT ]





It  will generate a kinetics_proposal.pkl file at $MMACTION2/data/ava_kinetics/.

Arguments:


	avakinetics_root: the directory to save the ava-kinetics dataset. Defaults to $MMACTION2/data/ava_kinetics.


	datalist: path to the kinetics_train.csv file generated at Step 3.


	picklepath: path to save the extracted proposal pickle file.


	config: the config file for the human detection model. Defaults to X-101-64x4d-FPN.py.


	checkpoint: the checkpoint for the human detection model. Defaults to the mmdetection pretraining checkpoint.






Step 7. Merge AVA to AVA-Kinetics

Now we are done with the preparations for the Kinetics part. We need to merge the AVA part into the ava_kinetics folder (assuming you have AVA dataset ready at $MMACTION2/data/ava). First we make a copy of the AVA anotation to the ava_kinetics folder (recall that you are at $MMACTION2/tools/data/ava_kinetics/):

cp -r ../../../data/ava/annotations/ ../../../data/ava_kinetics/





Next we merge the generated anotation files of the Kinetics part to AVA. Please check: you should have two files kinetics_train.csv and kinetics_proposal.pkl at $MMACTION2/data/ava_kinetics/ generated from Step 5 and Step 6. Run the following script to merge these two files into $MMACTION2/data/ava_kinetics/annotations/ava_train_v2.2.csv and $MMACTION2/data/ava_kinetics/annotations/ava_dense_proposals_train.FAIR.recall_93.9.pkl respectively.

python3 merge_annotations.py --avakinetics_root=$AVAKINETICS_ROOT





Arguments:


	avakinetics_root: the directory to save the ava-kinetics dataset. Defaults to $MMACTION2/data/ava_kinetics.




Finally, we need to merge the rawframes of AVA part. You can either copy/move them or generate soft links. The following script is an example to use soft links:

python3 softlink_ava.py --avakinetics_root=$AVAKINETICS_ROOT \
                        --ava_root=$AVA_ROOT





Arguments:


	avakinetics_root: the directory to save the ava-kinetics dataset. Defaults to $MMACTION2/data/ava_kinetics.


	ava_root: the directory to save the ava dataset. Defaults to $MMACTION2/data/ava.
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Introduction


@inproceedings{gao2017tall,
  title={Tall: Temporal activity localization via language query},
  author={Gao, Jiyang and Sun, Chen and Yang, Zhenheng and Nevatia, Ram},
  booktitle={Proceedings of the IEEE international conference on computer vision},
  pages={5267--5275},
  year={2017}
}

@inproceedings{DRN2020CVPR,
  author    = {Runhao, Zeng and Haoming, Xu and Wenbing, Huang and Peihao, Chen and Mingkui, Tan and Chuang Gan},
  title     = {Dense Regression Network for Video Grounding},
  booktitle = {CVPR},
  year      = {2020},
}





Charades-STA is a new dataset built on top of Charades by adding sentence temporal annotations. It is introduced by Gao et al. in TALL: Temporal Activity Localization via Language Query. Currently, we only support C3D features from Dense Regression Network for Video Grounding.



Step 1. Prepare Annotations

First of all, you can run the following script to prepare annotations from the official repository of DRN:

bash download_annotations.sh







Step 2. Prepare C3D features

After the first step, you should be at ${MMACTION2}/data/CharadesSTA/. Download the C3D features following the official command [https://github.com/Alvin-Zeng/DRN/tree/master#download-features] to the current directory ${MMACTION2}/data/CharadesSTA/.

After finishing the two steps, the folder structure will look like:

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── CharadesSTA
│   │   ├── C3D_unit16_overlap0.5_merged
│   │   |   ├── 001YG.pt
│   │   |   ├── 003WS.pt
│   │   |   ├── 004QE.pt
│   │   |   ├── 00607.pt
│   │   |   ├── ...
│   │   ├── Charades_duration.json
│   │   ├── Charades_fps_dict.json
│   │   ├── Charades_frames_info.json
│   │   ├── Charades_sta_test.txt
│   │   ├── Charades_sta_train.txt
│   │   ├── Charades_word2id.json
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Introduction


@inproceedings{li2018resound,
  title={Resound: Towards action recognition without representation bias},
  author={Li, Yingwei and Li, Yi and Vasconcelos, Nuno},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  pages={513--528},
  year={2018}
}





For basic dataset information, you can refer to the official dataset website [http://www.svcl.ucsd.edu/projects/resound/dataset.html].





Download by MIM






MIM supports downloading from OpenDataLab and preprocessing Diving48 dataset with one command line.

# install OpenXlab CLI tools
pip install -U openxlab
# log in OpenXLab
openxlab login
# download and preprocess by MIM
mim download mmaction2 --dataset diving48












Download form Official Source






Step 1. Prepare Annotations

You can run the following script to download annotations (considering the correctness of annotation files, we only download V2 version here).
Before we start, please make sure that the directory is located at $MMACTION2/tools/data/diving48/.

bash download_annotations.sh





Step 2. Prepare Videos

You can run the following script to download videos.

bash download_videos.sh





Step 3. Prepare RGB and Flow

This part is optional if you only want to use the video loader.

The frames provided in official compressed file are not complete. You may need to go through the following extraction steps to get the complete frames.

Before extracting, please refer to install.md [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/get_started/installation.md] for installing denseflow [https://github.com/open-mmlab/denseflow].

If you have plenty of SSD space, then we recommend extracting frames there for better I/O performance.

You can run the following script to soft link SSD.

# execute these two line (Assume the SSD is mounted at "/mnt/SSD/")
mkdir /mnt/SSD/diving48_extracted/
ln -s /mnt/SSD/diving48_extracted/ ../../../data/diving48/rawframes





If you only want to play with RGB frames (since extracting optical flow can be time-consuming), consider running the following script to extract RGB-only frames using denseflow.

cd $MMACTION2/tools/data/diving48/
bash extract_rgb_frames.sh





If you didn’t install denseflow, you can still extract RGB frames using OpenCV by the following script, but it will keep the original size of the images.

cd $MMACTION2/tools/data/diving48/
bash extract_rgb_frames_opencv.sh





If both are required, run the following script to extract frames.

cd $MMACTION2/tools/data/diving48/
bash extract_frames.sh





Step 4. Generate File List

you can run the follow script to generate file list in the format of rawframes and videos.

bash generate_videos_filelist.sh
bash generate_rawframes_filelist.sh












Check Directory Structure

After the whole data process for Diving48 preparation,
you will get the rawframes (RGB + Flow), videos and annotation files for Diving48.

In the context of the whole project (for Diving48 only), the folder structure will look like:

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── diving48
│   │   ├── diving48_{train,val}_list_rawframes.txt
│   │   ├── diving48_{train,val}_list_videos.txt
│   │   ├── annotations (optinonal)
│   |   |   ├── Diving48_V2_train.json
│   |   |   ├── Diving48_V2_test.json
│   |   |   ├── Diving48_vocab.json
│   |   ├── videos
│   |   |   ├── _8Vy3dlHg2w_00000.mp4
│   |   |   ├── _8Vy3dlHg2w_00001.mp4
│   |   |   ├── ...
│   |   ├── rawframes (optional)
│   |   |   ├── 2x00lRzlTVQ_00000
│   |   |   |   ├── img_00001.jpg
│   |   |   |   ├── img_00002.jpg
│   |   |   |   ├── ...
│   |   |   |   ├── flow_x_00001.jpg
│   |   |   |   ├── flow_x_00002.jpg
│   |   |   |   ├── ...
│   |   |   |   ├── flow_y_00001.jpg
│   |   |   |   ├── flow_y_00002.jpg
│   |   |   |   ├── ...
│   |   |   ├── 2x00lRzlTVQ_00001
│   |   |   ├── ...





For training and evaluating on Diving48, please refer to Training and Test Tutorial [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/user_guides/train_test.md].
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Introduction


@inproceedings{shao2020finegym,
  title={Finegym: A hierarchical video dataset for fine-grained action understanding},
  author={Shao, Dian and Zhao, Yue and Dai, Bo and Lin, Dahua},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={2616--2625},
  year={2020}
}





For basic dataset information, please refer to the official project [https://sdolivia.github.io/FineGym/] and the paper [https://arxiv.org/abs/2004.06704].
We currently provide the data pre-processing pipeline for GYM99.
Before we start, please make sure that the directory is located at $MMACTION2/tools/data/gym/.



Step 1. Prepare Annotations

First of all, you can run the following script to prepare annotations.

bash download_annotations.sh







Step 2. Prepare Videos

Then, you can run the following script to prepare videos.
The codes are adapted from the official crawler [https://github.com/activitynet/ActivityNet/tree/master/Crawler/Kinetics]. Note that this might take a long time.

bash download_videos.sh







Step 3. Trim Videos into Events

First, you need to trim long videos into events based on the annotation of GYM with the following scripts.

python trim_event.py







Step 4. Trim Events into Subactions

Then, you need to trim events into subactions based on the annotation of GYM with the following scripts. We use the two stage trimming for better efficiency (trimming multiple short clips from a long video can be extremely inefficient, since you need to go over the video many times).

python trim_subaction.py







Step 5. Extract RGB and Flow

This part is optional if you only want to use the video loader for RGB model training.

Before extracting, please refer to install.md [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/get_started/installation.md] for installing denseflow [https://github.com/open-mmlab/denseflow].

Run the following script to extract both rgb and flow using “tvl1” algorithm.

bash extract_frames.sh







Step 6. Generate file list for GYM99 based on extracted subactions

You can use the following script to generate train / val lists for GYM99.

python generate_file_list.py







Step 7. Folder Structure

After the whole data pipeline for GYM preparation. You can get the subaction clips, event clips, raw videos and GYM99 train/val lists.

In the context of the whole project (for GYM only), the full folder structure will look like:

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── gym
|   |   ├── annotations
|   |   |   ├── gym99_train_org.txt
|   |   |   ├── gym99_val_org.txt
|   |   |   ├── gym99_train.txt
|   |   |   ├── gym99_val.txt
|   |   |   ├── annotation.json
|   |   |   └── event_annotation.json
│   │   ├── videos
|   |   |   ├── 0LtLS9wROrk.mp4
|   |   |   ├── ...
|   |   |   └── zfqS-wCJSsw.mp4
│   │   ├── events
|   |   |   ├── 0LtLS9wROrk_E_002407_002435.mp4
|   |   |   ├── ...
|   |   |   └── zfqS-wCJSsw_E_006732_006824.mp4
│   │   ├── subactions
|   |   |   ├── 0LtLS9wROrk_E_002407_002435_A_0003_0005.mp4
|   |   |   ├── ...
|   |   |   └── zfqS-wCJSsw_E_006244_006252_A_0000_0007.mp4
|   |   └── subaction_frames





For training and evaluating on GYM, please refer to Training and Test Tutorial [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/user_guides/train_test.md].
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Introduction


@inproceedings{zhao2019hacs,
  title={Hacs: Human action clips and segments dataset for recognition and temporal localization},
  author={Zhao, Hang and Torralba, Antonio and Torresani, Lorenzo and Yan, Zhicheng},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={8668--8678},
  year={2019}
}






Step 0. Download Videos

Before we start preparing the dataset, please following the official repository [https://github.com/hangzhaomit/HACS-dataset] to download videos from the HACS Segments dataset. You can submit a request for missing videos to the maintainer of the HACS dataset repository. But you can still prepare the dataset for MMAction2 if some videos are missing.

After you finish downloading the dataset, please move the dataset folder to $MMACTION2/tools/data/hacs/ or use a soft link. The the folder structure should look like:

mmaction2
├── mmaction
├── data
├── configs
├── tools
│   ├── hacs
│   │   ├── slowonly_feature_infer.py
│   │   ├── ..
│   │   ├── data
│   │   │   ├── Applying_sunscreen
│   │   │   │   ├── v_0Ch__DqMPwA.mp4
│   │   │   │   ├── v_9CTDjFHl8WE.mp4
│   │   │   │   ├── ..







Before we start, make sure you are at $MMACTION2/tools/data/hacs/.



Step 1. Extract Features

We extract features from the HACS videos using SlowOnly ResNet50 8x8 [https://github.com/open-mmlab/mmaction2/blob/main/configs/recognition/slowonly/slowonly_imagenet-pretrained-r50_16xb16-4x16x1-steplr-150e_kinetics700-rgb.py] pretrained on Kinetics700 dataset. For each video, we uniformly sample 100 video clips and extract the 700-dimensional output (before softmax) as the feature, i.e., the feature shape is 100x700.

First, we generate a video list of the dataset:

python generate_list.py





It will generate an hacs_data.txt file located at $MMACTION2/tools/data/hacs/ which looks like:

Horseback_riding/v_Sr2BSq_8FMw.mp4 0
Horseback_riding/v_EQb6OKoqz3Q.mp4 1
Horseback_riding/v_vYKUV8TRngg.mp4 2
Horseback_riding/v_Y8U0X1F-0ck.mp4 3
Horseback_riding/v_hnspbB7wNh0.mp4 4
Horseback_riding/v_HPhlhrT9IOk.mp4 5





Next we use the slowonly_feature_infer.py [https://github.com/open-mmlab/mmaction2/blob/main/tools/data/hacs/slowonly_feature_infer.py] config to extract features:

# number of GPUs to extract feature
NUM_GPUS=8

# download the pretraining checkpoint
wget https://download.openmmlab.com/mmaction/v1.0/recognition/slowonly/slowonly_imagenet-pretrained-r50_16xb16-8x8x1-steplr-150e_kinetics700-rgb/slowonly_imagenet-pretrained-r50_16xb16-8x8x1-steplr-150e_kinetics700-rgb_20221013-15b93b10.pth

bash ../mmaction2/tools/dist_test.sh \
    slowonly_feature_infer.py \
    slowonly_imagenet-pretrained-r50_16xb16-8x8x1-steplr-150e_kinetics700-rgb_20221013-15b93b10.pth \
    $NUM_GPUS --dump result.pkl





We will get a result.pkl that contains the 100x700 feature for each video. We re-write the features into csv format at $MMACTION2/data/HACS/:

# Make sure you are at $MMACTION2/tools/data/hacs/
python write_feature_csv.py







Step 2. Prepare Annotations

We first download the original annotations from the official repository:

wget https://github.com/hangzhaomit/HACS-dataset/raw/master/HACS_v1.1.1.zip
unzip HACS_v1.1.1.zip





After unzipping, there should be an HACS_v1.1.1 folder with an HACS_segments_v1.1.1.json file in it.

We generate hacs_anno_train.json,  hacs_anno_val.json and hacs_anno_test.json files at $MMACTION2/data/HACS/:

python3 generate_anotations.py





After the two steps finished, the folder structure of the HACS Segments dataset should look like:

mmaction2
├── mmaction
├── data
│   ├── HACS
│   │   ├── hacs_anno_train.json
│   │   ├── hacs_anno_val.json
│   │   ├── hacs_anno_test.json
│   │   ├── slowonly_feature
│   │   │   ├── v_008gY2B8Pf4.csv
│   │   │   ├── v_0095rqic1n8.csv
├── configs
├── tools
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Introduction


@article{Kuehne2011HMDBAL,
  title={HMDB: A large video database for human motion recognition},
  author={Hilde Kuehne and Hueihan Jhuang and E. Garrote and T. Poggio and Thomas Serre},
  journal={2011 International Conference on Computer Vision},
  year={2011},
  pages={2556-2563}
}





For basic dataset information, you can refer to the dataset website [https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/].
Before we start, please make sure that the directory is located at $MMACTION2/tools/data/hmdb51/.

To run the bash scripts below, you need to install unrar. you can install it by sudo apt-get install unrar,
or refer to this repo [https://github.com/innerlee/setup] by following the usage and taking zzunrar.sh [https://github.com/innerlee/setup/blob/master/zzunrar.sh]
script for easy installation without sudo.



Step 1. Prepare Annotations

First of all, you can run the following script to prepare annotations.

bash download_annotations.sh







Step 2. Prepare Videos

Then, you can run the following script to prepare videos.

bash download_videos.sh







Step 3. Extract RGB and Flow

This part is optional if you only want to use the video loader.

Before extracting, please refer to install.md [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/get_started/installation.md] for installing denseflow [https://github.com/open-mmlab/denseflow].

If you have plenty of SSD space, then we recommend extracting frames there for better I/O performance.

You can run the following script to soft link SSD.

# execute these two line (Assume the SSD is mounted at "/mnt/SSD/")
mkdir /mnt/SSD/hmdb51_extracted/
ln -s /mnt/SSD/hmdb51_extracted/ ../../../data/hmdb51/rawframes





If you only want to play with RGB frames (since extracting optical flow can be time-consuming), consider running the following script to extract RGB-only frames using denseflow.

bash extract_rgb_frames.sh





If you didn’t install denseflow, you can still extract RGB frames using OpenCV by the following script, but it will keep the original size of the images.

bash extract_rgb_frames_opencv.sh





If both are required, run the following script to extract frames using “tvl1” algorithm.

bash extract_frames.sh







Step 4. Generate File List

you can run the follow script to generate file list in the format of rawframes and videos.

bash generate_rawframes_filelist.sh
bash generate_videos_filelist.sh







Step 5. Check Directory Structure

After the whole data process for HMDB51 preparation,
you will get the rawframes (RGB + Flow), videos and annotation files for HMDB51.

In the context of the whole project (for HMDB51 only), the folder structure will look like:

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── hmdb51
│   │   ├── hmdb51_{train,val}_split_{1,2,3}_rawframes.txt
│   │   ├── hmdb51_{train,val}_split_{1,2,3}_videos.txt
│   │   ├── annotations
│   │   ├── videos
│   │   │   ├── brush_hair
│   │   │   │   ├── April_09_brush_hair_u_nm_np1_ba_goo_0.avi

│   │   │   ├── wave
│   │   │   │   ├── 20060723sfjffbartsinger_wave_f_cm_np1_ba_med_0.avi
│   │   ├── rawframes
│   │   │   ├── brush_hair
│   │   │   │   ├── April_09_brush_hair_u_nm_np1_ba_goo_0
│   │   │   │   │   ├── img_00001.jpg
│   │   │   │   │   ├── img_00002.jpg
│   │   │   │   │   ├── ...
│   │   │   │   │   ├── flow_x_00001.jpg
│   │   │   │   │   ├── flow_x_00002.jpg
│   │   │   │   │   ├── ...
│   │   │   │   │   ├── flow_y_00001.jpg
│   │   │   │   │   ├── flow_y_00002.jpg
│   │   │   ├── ...
│   │   │   ├── wave
│   │   │   │   ├── 20060723sfjffbartsinger_wave_f_cm_np1_ba_med_0
│   │   │   │   ├── ...
│   │   │   │   ├── winKen_wave_u_cm_np1_ri_bad_1






For training and evaluating on HMDB51, please refer to Training and Test Tutorial [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/user_guides/train_test.md].
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Introduction


@article{Diba2019LargeSH,
  title={Large Scale Holistic Video Understanding},
  author={Ali Diba and M. Fayyaz and Vivek Sharma and Manohar Paluri and Jurgen Gall and R. Stiefelhagen and L. Gool},
  journal={arXiv: Computer Vision and Pattern Recognition},
  year={2019}
}





For basic dataset information, please refer to the official project [https://github.com/holistic-video-understanding/HVU-Dataset/] and the paper [https://arxiv.org/abs/1904.11451].
Before we start, please make sure that the directory is located at $MMACTION2/tools/data/hvu/.



Step 1. Prepare Annotations

First of all, you can run the following script to prepare annotations.

bash download_annotations.sh





Besides, you need to run the following command to parse the tag list of HVU.

python parse_tag_list.py







Step 2. Prepare Videos

Then, you can run the following script to prepare videos.
The codes are adapted from the official crawler [https://github.com/activitynet/ActivityNet/tree/master/Crawler/Kinetics]. Note that this might take a long time.

bash download_videos.sh







Step 3. Extract RGB and Flow

This part is optional if you only want to use the video loader.

Before extracting, please refer to install.md [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/get_started/installation.md] for installing denseflow [https://github.com/open-mmlab/denseflow].

You can use the following script to extract both RGB and Flow frames.

bash extract_frames.sh





By default, we generate frames with short edge resized to 256.
More details can be found in prepare_dataset [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/user_guides/prepare_dataset.md]



Step 4. Generate File List

You can run the follow scripts to generate file list in the format of videos and rawframes, respectively.

bash generate_videos_filelist.sh
# execute the command below when rawframes are ready
bash generate_rawframes_filelist.sh







Step 5. Generate File List for Each Individual Tag Categories

This part is optional if you don’t want to train models on HVU for a specific tag category.

The file list generated in step 4 contains labels of different categories. These file lists can only be
handled with HVUDataset and used for multi-task learning of different tag categories. The component
LoadHVULabel is needed to load the multi-category tags, and the HVULoss should be used to train
the model.

If you only want to train video recognition models for a specific tag category, i.e. you want to train
a recognition model on HVU which only handles tags in the category action, we recommend you to use
the following command to generate file lists for the specific tag category. The new list, which only
contains tags of a specific category, can be handled with VideoDataset or RawframeDataset. The
recognition models can be trained with BCELossWithLogits.

The following command generates file list for the tag category ${category}, note that the tag category you
specified should be in the 6 tag categories available in HVU: [‘action’, ‘attribute’, ‘concept’, ‘event’,
‘object’, ‘scene’].

python generate_sub_file_list.py path/to/filelist.json ${category}





The filename of the generated file list for ${category} is generated by replacing hvu in the original
filename with hvu_${category}. For example, if the original filename is hvu_train.json, the filename
of the file list for action is hvu_action_train.json.



Step 6. Folder Structure

After the whole data pipeline for HVU preparation.
you can get the rawframes (RGB + Flow), videos and annotation files for HVU.

In the context of the whole project (for HVU only), the full folder structure will look like:

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── hvu
│   │   ├── hvu_train_video.json
│   │   ├── hvu_val_video.json
│   │   ├── hvu_train.json
│   │   ├── hvu_val.json
│   │   ├── annotations
│   │   ├── videos_train
│   │   │   ├── OLpWTpTC4P8_000570_000670.mp4
│   │   │   ├── xsPKW4tZZBc_002330_002430.mp4
│   │   │   ├── ...
│   │   ├── videos_val
│   │   ├── rawframes_train
│   │   ├── rawframes_val






For training and evaluating on HVU, please refer to Training and Test Tutorial [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/user_guides/train_test.md].
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@InProceedings{Materzynska_2019_ICCV,
  author = {Materzynska, Joanna and Berger, Guillaume and Bax, Ingo and Memisevic, Roland},
  title = {The Jester Dataset: A Large-Scale Video Dataset of Human Gestures},
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops},
  month = {Oct},
  year = {2019}
}





For basic dataset information, you can refer to the dataset website [https://developer.qualcomm.com/software/ai-datasets/jester].
Before we start, please make sure that the directory is located at $MMACTION2/tools/data/jester/.



Step 1. Prepare Annotations

First of all, you have to sign in and download annotations to $MMACTION2/data/jester/annotations on the official website [https://developer.qualcomm.com/software/ai-datasets/jester].



Step 2. Prepare RGB Frames

Since the jester website [https://developer.qualcomm.com/software/ai-datasets/jester] doesn’t provide the original video data and only extracted RGB frames are available, you have to directly download RGB frames from jester website [https://developer.qualcomm.com/software/ai-datasets/jester].

You can download all RGB frame parts on jester website [https://developer.qualcomm.com/software/ai-datasets/jester] to $MMACTION2/data/jester/ and use the following command to extract.

cd $MMACTION2/data/jester/
cat 20bn-jester-v1-?? | tar zx
cd $MMACTION2/tools/data/jester/





For users who only want to use RGB frames, you can skip to step 5 to generate file lists in the format of rawframes. Since the prefix of official JPGs is “%05d.jpg” (e.g., “00001.jpg”),
we add "filename_tmpl='{:05}.jpg'" to the dict of data.train, data.val and data.test in the config files related with jester like this:

data = dict(
    videos_per_gpu=16,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        ann_file=ann_file_train,
        data_prefix=data_root,
        filename_tmpl='{:05}.jpg',
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        ann_file=ann_file_val,
        data_prefix=data_root_val,
        filename_tmpl='{:05}.jpg',
        pipeline=val_pipeline),
    test=dict(
        type=dataset_type,
        ann_file=ann_file_test,
        data_prefix=data_root_val,
        filename_tmpl='{:05}.jpg',
        pipeline=test_pipeline))







Step 3. Extract Flow

This part is optional if you only want to use RGB frames.

Before extracting, please refer to install.md [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/get_started/installation.md] for installing denseflow [https://github.com/open-mmlab/denseflow].

If you have plenty of SSD space, then we recommend extracting frames there for better I/O performance.

You can run the following script to soft link SSD.

# execute these two line (Assume the SSD is mounted at "/mnt/SSD/")
mkdir /mnt/SSD/jester_extracted/
ln -s /mnt/SSD/jester_extracted/ ../../../data/jester/rawframes





Then, you can run the following script to extract optical flow based on RGB frames.

cd $MMACTION2/tools/data/jester/
bash extract_flow.sh







Step 4. Encode Videos

This part is optional if you only want to use RGB frames.

You can run the following script to encode videos.

cd $MMACTION2/tools/data/jester/
bash encode_videos.sh







Step 5. Generate File List

You can run the follow script to generate file list in the format of rawframes and videos.

cd $MMACTION2/tools/data/jester/
bash generate_{rawframes, videos}_filelist.sh







Step 5. Check Directory Structure

After the whole data process for Jester preparation,
you will get the rawframes (RGB + Flow), and annotation files for Jester.

In the context of the whole project (for Jester only), the folder structure will look like:

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── jester
│   │   ├── jester_{train,val}_list_rawframes.txt
│   │   ├── jester_{train,val}_list_videos.txt
│   │   ├── annotations
│   |   ├── videos
│   |   |   ├── 1.mp4
│   |   |   ├── 2.mp4
│   |   |   ├──...
│   |   ├── rawframes
│   |   |   ├── 1
│   |   |   |   ├── 00001.jpg
│   |   |   |   ├── 00002.jpg
│   |   |   |   ├── ...
│   |   |   |   ├── flow_x_00001.jpg
│   |   |   |   ├── flow_x_00002.jpg
│   |   |   |   ├── ...
│   |   |   |   ├── flow_y_00001.jpg
│   |   |   |   ├── flow_y_00002.jpg
│   |   |   |   ├── ...
│   |   |   ├── 2
│   |   |   ├── ...






For training and evaluating on Jester, please refer to Training and Test Tutorial [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/user_guides/train_test.md].
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@inproceedings{Jhuang:ICCV:2013,
    title = {Towards understanding action recognition},
    author = {H. Jhuang and J. Gall and S. Zuffi and C. Schmid and M. J. Black},
    booktitle = {International Conf. on Computer Vision (ICCV)},
    month = Dec,
    pages = {3192-3199},
    year = {2013}
}





For basic dataset information, you can refer to the dataset website [http://jhmdb.is.tue.mpg.de/].
Before we start, please make sure that the directory is located at $MMACTION2/tools/data/jhmdb/.



Download and Extract

You can download the RGB frames, optical flow and ground truth annotations from google drive [https://drive.google.com/drive/folders/1BvGywlAGrACEqRyfYbz3wzlVV3cDFkct].
The data are provided from MOC [https://github.com/MCG-NJU/MOC-Detector/blob/master/readme/Dataset.md], which is adapted from act-detector [https://github.com/vkalogeiton/caffe/tree/act-detector].

After downloading the JHMDB.tar.gz file and put it in $MMACTION2/tools/data/jhmdb/, you can run the following command to extract.

tar -zxvf JHMDB.tar.gz





If you have plenty of SSD space, then we recommend extracting frames there for better I/O performance.

You can run the following script to soft link SSD.

# execute these two line (Assume the SSD is mounted at "/mnt/SSD/")
mkdir /mnt/SSD/JHMDB/
ln -s /mnt/SSD/JHMDB/ ../../../data/jhmdb







Check Directory Structure

After extracting, you will get the FlowBrox04 directory, Frames directory and JHMDB-GT.pkl for JHMDB.

In the context of the whole project (for JHMDB only), the folder structure will look like:

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── jhmdb
│   |   ├── FlowBrox04
│   |   |   ├── brush_hair
│   |   |   |   ├── April_09_brush_hair_u_nm_np1_ba_goo_0
│   |   |   |   |   ├── 00001.jpg
│   |   |   |   |   ├── 00002.jpg
│   |   |   |   |   ├── ...
│   |   |   |   |   ├── 00039.jpg
│   |   |   |   |   ├── 00040.jpg
│   |   |   |   ├── ...
│   |   |   |   ├── Trannydude___Brushing_SyntheticHair___OhNOES!__those_fukin_knots!_brush_hair_u_nm_np1_fr_goo_2
│   |   |   ├── ...
│   |   |   ├── wave
│   |   |   |   ├── 21_wave_u_nm_np1_fr_goo_5
│   |   |   |   ├── ...
│   |   |   |   ├── Wie_man_winkt!!_wave_u_cm_np1_fr_med_0
│   |   ├── Frames
│   |   |   ├── brush_hair
│   |   |   |   ├── April_09_brush_hair_u_nm_np1_ba_goo_0
│   |   |   |   |   ├── 00001.png
│   |   |   |   |   ├── 00002.png
│   |   |   |   |   ├── ...
│   |   |   |   |   ├── 00039.png
│   |   |   |   |   ├── 00040.png
│   |   |   |   ├── ...
│   |   |   |   ├── Trannydude___Brushing_SyntheticHair___OhNOES!__those_fukin_knots!_brush_hair_u_nm_np1_fr_goo_2
│   |   |   ├── ...
│   |   |   ├── wave
│   |   |   |   ├── 21_wave_u_nm_np1_fr_goo_5
│   |   |   |   ├── ...
│   |   |   |   ├── Wie_man_winkt!!_wave_u_cm_np1_fr_med_0
│   |   ├── JHMDB-GT.pkl







Note

The JHMDB-GT.pkl exists as a cache, it contains 6 items as follows:


	labels (list): List of the 21 labels.


	gttubes (dict): Dictionary that contains the ground truth tubes for each video.
A gttube is dictionary that associates with each index of label and a list of tubes.
A tube is a numpy array with nframes rows and 5 columns, each col is in format like <frame index> <x1> <y1> <x2> <y2>.


	nframes (dict): Dictionary that contains the number of frames for each video, like 'walk/Panic_in_the_Streets_walk_u_cm_np1_ba_med_5': 16.


	train_videos (list): A list with nsplits=1 elements, each one containing the list of training videos.


	test_videos (list): A list with nsplits=1 elements, each one containing the list of testing videos.


	resolution (dict): Dictionary that outputs a tuple (h,w) of the resolution for each video, like 'pour/Bartender_School_Students_Practice_pour_u_cm_np1_fr_med_1': (240, 320).
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Introduction


@inproceedings{inproceedings,
  author = {Carreira, J. and Zisserman, Andrew},
  year = {2017},
  month = {07},
  pages = {4724-4733},
  title = {Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset},
  doi = {10.1109/CVPR.2017.502}
}





For basic dataset information, please refer to the official website [https://deepmind.com/research/open-source/open-source-datasets/kinetics/].


Note

Because of the expirations of some YouTube links, the sizes of kinetics dataset copies may be different. Here are the sizes of our kinetics dataset copies that used to train all checkpoints.




	Dataset
	training videos
	validation videos





	kinetics400
	240436
	19796



	Kinetics600
	383393
	27910



	Kinetics700
	542357
	34824











Download by MIM







Note

All experiments on Kinetics in MMAction2 are based on this version, we recommend users to try this version.



MIM supports downloading from OpenDataLab and preprocessing Kinetics-400/600/700 dataset with one command line.

# install OpenXlab CLI tools
pip install -U openxlab
# log in OpenXLab
openxlab login
# download and preprocess Kinetics-400 by MIM. Note that this might take a long time.
mim download mmaction2 --dataset kinetics400
# download and preprocess Kinetics-600 by MIM. Note that this might take a long time.
mim download mmaction2 --dataset kinetics600
# download and preprocess Kinetics-700 by MIM. Note that this might take a long time.
mim download mmaction2 --dataset kinetics700












Download form Official Source






Step 1. Prepare Annotations

The scripts can be used for preparing kinetics400, kinetics600, kinetics700. To prepare different version of kinetics, you need to replace ${DATASET} in the following examples with the specific dataset name. The choices of dataset names are kinetics400, kinetics600 and kinetics700.
Before we start, please make sure that the directory is located at $MMACTION2/tools/data/${DATASET}/.

First of all, you can run the following script to prepare annotations by downloading from the official website [https://deepmind.com/research/open-source/open-source-datasets/kinetics/].

bash download_annotations.sh ${DATASET}





Since some video urls are invalid, the number of video items in current official annotations are less than the original official ones.
So we provide an alternative way to download the older one as a reference.
Among these, the annotation files of Kinetics400 and Kinetics600 are from official crawler [https://github.com/activitynet/ActivityNet/tree/199c9358907928a47cdfc81de4db788fddc2f91d/Crawler/Kinetics/data],
the annotation files of Kinetics700 are from website [https://deepmind.com/research/open-source/open-source-datasets/kinetics/] downloaded in 05/02/2021.

bash download_backup_annotations.sh ${DATASET}





Step 2. Prepare Videos

you can run the following script to prepare videos.
The codes are adapted from the official crawler [https://github.com/activitynet/ActivityNet/tree/master/Crawler/Kinetics]. Note that this might take a long time.

bash download_videos.sh ${DATASET}





Important: If you have already downloaded video dataset using the download script above,
you must replace all whitespaces in the class name for ease of processing by running

bash rename_classnames.sh ${DATASET}





For better decoding speed, you can resize the original videos into smaller sized, densely encoded version by:

python ../resize_videos.py ../../../data/${DATASET}/videos_train/ ../../../data/${DATASET}/videos_train_256p_dense_cache --dense --level 2





You can also download from Academic Torrents [https://academictorrents.com/] (kinetics400 [https://academictorrents.com/details/184d11318372f70018cf9a72ef867e2fb9ce1d26] & kinetics700 [https://academictorrents.com/details/49f203189fb69ae96fb40a6d0e129949e1dfec98] with short edge 256 pixels are available) and cvdfoundation/kinetics-dataset [https://github.com/cvdfoundation/kinetics-dataset] (Host by Common Visual Data Foundation and Kinetics400/Kinetics600/Kinetics-700-2020 are available)

Step 3. Extract RGB and Flow

This part is optional if you only want to use the video loader.

Before extracting, please refer to install.md [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/get_started/installation.md] for installing denseflow [https://github.com/open-mmlab/denseflow].

If you have plenty of SSD space, then we recommend extracting frames there for better I/O performance. And you can run the following script to soft link the extracted frames.

# execute these two line (Assume the SSD is mounted at "/mnt/SSD/")
mkdir /mnt/SSD/${DATASET}_extracted_train/
ln -s /mnt/SSD/${DATASET}_extracted_train/ ../../../data/${DATASET}/rawframes_train/
mkdir /mnt/SSD/${DATASET}_extracted_val/
ln -s /mnt/SSD/${DATASET}_extracted_val/ ../../../data/${DATASET}/rawframes_val/





If you only want to play with RGB frames (since extracting optical flow can be time-consuming), consider running the following script to extract RGB-only frames using denseflow.

bash extract_rgb_frames.sh ${DATASET}





If you didn’t install denseflow, you can still extract RGB frames using OpenCV by the following script, but it will keep the original size of the images.

bash extract_rgb_frames_opencv.sh ${DATASET}





If both are required, run the following script to extract frames.

bash extract_frames.sh ${DATASET}





The commands above can generate images with new short edge 256. If you want to generate images with short edge 320 (320p), or with fix size 340x256, you can change the args --new-short 256 to --new-short 320 or --new-width 340 --new-height 256.
More details can be found in prepare dataset [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/user_guides/prepare_dataset.md].

Step 4. Generate File List

you can run the follow scripts to generate file list in the format of videos and rawframes, respectively.

bash generate_videos_filelist.sh ${DATASET}
# execute the command below when rawframes are ready
bash generate_rawframes_filelist.sh ${DATASET}












Folder Structure

After the whole data pipeline for Kinetics preparation.
you can get the rawframes (RGB + Flow), videos and annotation files for Kinetics.

In the context of the whole project (for Kinetics only), the minimal folder structure will look like:
(minimal means that some data are not necessary: for example, you may want to evaluate kinetics using the original video format.)

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── ${DATASET}
│   │   ├── ${DATASET}_train_list_videos.txt
│   │   ├── ${DATASET}_val_list_videos.txt
│   │   ├── annotations
│   │   ├── videos_train
│   │   ├── videos_val
│   │   │   ├── abseiling
│   │   │   │   ├── 0wR5jVB-WPk_000417_000427.mp4
│   │   │   │   ├── ...
│   │   │   ├── ...
│   │   │   ├── wrapping_present
│   │   │   ├── ...
│   │   │   ├── zumba
│   │   ├── rawframes_train (optional)
│   │   ├── rawframes_val (optional)






For training and evaluating on Kinetics, please refer to Training and Test Tutorial [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/user_guides/train_test.md].
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Preparing Kinetics-710


Introduction


@misc{li2022uniformerv2,
      title={UniFormerV2: Spatiotemporal Learning by Arming Image ViTs with Video UniFormer},
      author={Kunchang Li and Yali Wang and Yinan He and Yizhuo Li and Yi Wang and Limin Wang and Yu Qiao},
      year={2022},
      eprint={2211.09552},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}





For basic dataset information, please refer to the paper [https://arxiv.org/pdf/2211.09552.pdf]. The scripts can be used for preparing kinetics-710. MMAction2 supports Kinetics-710
dataset as a concat dataset, which means only provides a list of annotation files, and makes use of the original data of Kinetics-400/600/700 dataset. You could refer to the config [https://github.com/open-mmlab/mmaction2/blob/main/configs/recognition/uniformerv2/uniformerv2-base-p16-res224_clip_u8_kinetics710-rgb.py]
for details, which also provides a template config about how to use concat dataset in MMAction2.
Before we start, please make sure that the directory is located at $MMACTION2.



Step 1. Download Kinetics 400/600/700

Kinetics-710 is a video benchmark based on Kinetics-400/600/700, which merges the training set of these Kinetics datasets, and deletes the repeated videos according to Youtube IDs. MMAction2 provides an annotation file based on the Kinetics-400/600/700 on OpenDataLab [https://opendatalab.com/]. So we suggest you download Kinetics-400/600/700 first from OpenDataLab by MIM [https://github.com/open-mmlab/mim].

# install OpenXlab CLI tools
pip install -U openxlab
# log in OpenXLab
openxlab login
# download Kinetics-400/600/700, note that this might take a long time.
mim download mmaction2 --dataset kinetics400
mim download mmaction2 --dataset kinetics600
mim download mmaction2 --dataset kinetics700







Step 2. Download Kinetics-710 Annotations

We provide the annotation list of Kinetics-710 corresponding to OpenDataLab version Kinetics, you could download it from aliyun and unzip it to the $MMACTION2/data/

wget -P data https://download.openmmlab.com/mmaction/dataset/kinetics710/annotations.zip
cd data && unzip annotations.zip && cd ..







Step 3. Folder Structure

After the whole data pipeline for Kinetics preparation.
you can get the videos and annotation files for Kinetics-710.

In the context of the whole project (for Kinetics only), the minimal folder structure will look like:
(minimal means that some data are not necessary: for example, you may want to evaluate kinetics using the original video format.)

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── kinetics400
│   │   ├── videos_train
│   │   ├── videos_val
│   │   │   ├── jf7RDuUTrsQ.mp4
│   │   │   ├── ...
│   ├── kinetics600
│   │   ├── videos
│   │   │   ├── vol_00
│   │   │   │   ├── -A5JFdMXB_k_000018_000028.mp4
│   │   │   │   ├── ...
│   │   │   ├── ...
│   │   │   ├── vol63
│   ├── kinetics700
│   │   ├── videos
│   │   │   ├── vol_00
│   │   │   │   ├── -Paa0R0tQ1w_000009_000019.mp4
│   │   │   │   ├── ...
│   │   │   ├── ...
│   │   │   ├── vol63
│   ├── kinetics710
│   │   ├── k400_train_list_videos.txt
│   │   ├── k400_val_list_videos.txt
│   │   ├── k600_train_list_videos.txt
│   │   ├── k600_val_list_videos.txt
│   │   ├── k700_train_list_videos.txt
│   │   ├── k700_val_list_videos.txt





For training and evaluating on Kinetics, please refer to Training and Test Tutorial [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/user_guides/train_test.md].
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Introduction


@article{monfortmoments,
    title={Moments in Time Dataset: one million videos for event understanding},
    author={Monfort, Mathew and Andonian, Alex and Zhou, Bolei and Ramakrishnan, Kandan and Bargal, Sarah Adel and Yan, Tom and Brown, Lisa and Fan, Quanfu and Gutfruend, Dan and Vondrick, Carl and others},
    journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
    year={2019},
    issn={0162-8828},
    pages={1--8},
    numpages={8},
    doi={10.1109/TPAMI.2019.2901464},
}





For basic dataset information, you can refer to the dataset website [http://moments.csail.mit.edu/].
Before we start, please make sure that the directory is located at $MMACTION2/tools/data/mit/.



Step 1. Prepare Annotations and Videos

First of all, you have to visit the official website [http://moments.csail.mit.edu/], fill in an application form for downloading the dataset. Then you will get the download link. You can use bash preprocess_data.sh to prepare annotations and videos. However, the download command is missing in that script. Remember to download the dataset to the proper place follow the comment in this script.

For better decoding speed, you can resize the original videos into smaller sized, densely encoded version by:

python ../resize_videos.py ../../../data/mit/videos/ ../../../data/mit/videos_256p_dense_cache --dense --level 2







Step 2. Extract RGB and Flow

This part is optional if you only want to use the video loader.

Before extracting, please refer to install.md [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/get_started/installation.md] for installing denseflow [https://github.com/open-mmlab/denseflow].

If you have plenty of SSD space, then we recommend extracting frames there for better I/O performance. And you can run the following script to soft link the extracted frames.

# execute these two line (Assume the SSD is mounted at "/mnt/SSD/")
mkdir /mnt/SSD/mit_extracted/
ln -s /mnt/SSD/mit_extracted/ ../../../data/mit/rawframes





If you only want to play with RGB frames (since extracting optical flow can be time-consuming), consider running the following script to extract RGB-only frames using denseflow.

bash extract_rgb_frames.sh





If you didn’t install denseflow, you can still extract RGB frames using OpenCV by the following script, but it will keep the original size of the images.

bash extract_rgb_frames_opencv.sh





If both are required, run the following script to extract frames.

bash extract_frames.sh







Step 4. Generate File List

you can run the follow script to generate file list in the format of rawframes and videos.

bash generate_{rawframes, videos}_filelist.sh







Step 5. Check Directory Structure

After the whole data process for Moments in Time preparation,
you will get the rawframes (RGB + Flow), videos and annotation files for Moments in Time.

In the context of the whole project (for Moments in Time only), the folder structure will look like:

mmaction2
├── data
│   └── mit
│       ├── annotations
│       │   ├── license.txt
│       │   ├── moments_categories.txt
│       │   ├── README.txt
│       │   ├── trainingSet.csv
│       │   └── validationSet.csv
│       ├── mit_train_rawframe_anno.txt
│       ├── mit_train_video_anno.txt
│       ├── mit_val_rawframe_anno.txt
│       ├── mit_val_video_anno.txt
│       ├── rawframes
│       │   ├── training
│       │   │   ├── adult+female+singing
│       │   │   │   ├── 0P3XG_vf91c_35
│       │   │   │   │   ├── flow_x_00001.jpg
│       │   │   │   │   ├── flow_x_00002.jpg
│       │   │   │   │   ├── ...
│       │   │   │   │   ├── flow_y_00001.jpg
│       │   │   │   │   ├── flow_y_00002.jpg
│       │   │   │   │   ├── ...
│       │   │   │   │   ├── img_00001.jpg
│       │   │   │   │   └── img_00002.jpg
│       │   │   │   └── yt-zxQfALnTdfc_56
│       │   │   │   │   ├── ...
│       │   │   └── yawning
│       │   │       ├── _8zmP1e-EjU_2
│       │   │       │   ├── ...
│       │   └── validation
│       │   │       ├── ...
│       └── videos
│           ├── training
│           │   ├── adult+female+singing
│           │   │   ├── 0P3XG_vf91c_35.mp4
│           │   │   ├── ...
│           │   │   └── yt-zxQfALnTdfc_56.mp4
│           │   └── yawning
│           │       ├── ...
│           └── validation
│           │   ├── ...
└── mmaction
└── ...






For training and evaluating on Moments in Time, please refer to Training and Test Tutorial [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/user_guides/train_test.md].
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Introduction


@misc{monfort2019multimoments,
    title={Multi-Moments in Time: Learning and Interpreting Models for Multi-Action Video Understanding},
    author={Mathew Monfort and Kandan Ramakrishnan and Alex Andonian and Barry A McNamara and Alex Lascelles, Bowen Pan, Quanfu Fan, Dan Gutfreund, Rogerio Feris, Aude Oliva},
    year={2019},
    eprint={1911.00232},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}





For basic dataset information, you can refer to the dataset website [http://moments.csail.mit.edu].
Before we start, please make sure that the directory is located at $MMACTION2/tools/data/mmit/.



Step 1. Prepare Annotations and Videos

First of all, you have to visit the official website [http://moments.csail.mit.edu/], fill in an application form for downloading the dataset. Then you will get the download link. You can use bash preprocess_data.sh to prepare annotations and videos. However, the download command is missing in that script. Remember to download the dataset to the proper place follow the comment in this script.

For better decoding speed, you can resize the original videos into smaller sized, densely encoded version by:

python ../resize_videos.py ../../../data/mmit/videos/ ../../../data/mmit/videos_256p_dense_cache --dense --level 2







Step 2. Extract RGB and Flow

This part is optional if you only want to use the video loader.

Before extracting, please refer to install.md [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/get_started/installation.md] for installing denseflow [https://github.com/open-mmlab/denseflow].

First, you can run the following script to soft link SSD.

# execute these two line (Assume the SSD is mounted at "/mnt/SSD/")
mkdir /mnt/SSD/mmit_extracted/
ln -s /mnt/SSD/mmit_extracted/ ../../../data/mmit/rawframes





If you only want to play with RGB frames (since extracting optical flow can be time-consuming), consider running the following script to extract RGB-only frames using denseflow.

bash extract_rgb_frames.sh





If you didn’t install denseflow, you can still extract RGB frames using OpenCV by the following script, but it will keep the original size of the images.

bash extract_rgb_frames_opencv.sh





If both are required, run the following script to extract frames using “tvl1” algorithm.

bash extract_frames.sh







Step 3. Generate File List

you can run the follow script to generate file list in the format of rawframes or videos.

bash generate_rawframes_filelist.sh
bash generate_videos_filelist.sh







Step 4. Check Directory Structure

After the whole data process for Multi-Moments in Time preparation,
you will get the rawframes (RGB + Flow), videos and annotation files for Multi-Moments in Time.

In the context of the whole project (for Multi-Moments in Time only), the folder structure will look like:

mmaction2/
└── data
    └── mmit
        ├── annotations
        │   ├── moments_categories.txt
        │   ├── trainingSet.txt
        │   └── validationSet.txt
        ├── mmit_train_rawframes.txt
        ├── mmit_train_videos.txt
        ├── mmit_val_rawframes.txt
        ├── mmit_val_videos.txt
        ├── rawframes
        │   ├── 0-3-6-2-9-1-2-6-14603629126_5
        │   │   ├── flow_x_00001.jpg
        │   │   ├── flow_x_00002.jpg
        │   │   ├── ...
        │   │   ├── flow_y_00001.jpg
        │   │   ├── flow_y_00002.jpg
        │   │   ├── ...
        │   │   ├── img_00001.jpg
        │   │   └── img_00002.jpg
        │   │   ├── ...
        │   └── yt-zxQfALnTdfc_56
        │   │   ├── ...
        │   └── ...

        └── videos
            └── adult+female+singing
                ├── 0-3-6-2-9-1-2-6-14603629126_5.mp4
                └── yt-zxQfALnTdfc_56.mp4
            └── ...





For training and evaluating on Multi-Moments in Time, please refer to Training and Test Tutorial [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/user_guides/train_test.md].
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Introduction


@inproceedings{xu2016msr,
      title={Msr-vtt: A large video description dataset for bridging video and language},
      author={Xu, Jun and Mei, Tao and Yao, Ting and Rui, Yong},
      booktitle={CVPR},
      pages={5288--5296},
      year={2016}
}





Before preparing the dataset, please make sure that the directory is located at $MMACTION2/tools/data/msrvtt/.



Step 1. Download Annotation Files

You can directly download the following annotation files related to MSR-VTT from the Google Drive link [https://drive.google.com/drive/folders/12cr94wT8j7pR09AR2nmQg6o26Y1arI50] provided by VindLU [https://github.com/klauscc] and place them in the $MMACTION2/tools/data/msrvtt/annotations directory:


	msrvtt_qa_train.json [https://drive.google.com/file/d/12dJq5_7v8FytrJwrPB_f22tET1MmGCNh/view?usp=drive_link]


	msrvtt_qa_val.json [https://drive.google.com/file/d/138q-A-V8fCC2nBYJgqkQa3gBfXVNbNNd/view?usp=drive_link]


	msrvtt_qa_test.json [https://drive.google.com/file/d/13IiEcUMHiNppWhGwVY1eAaip6iSJM35A/view?usp=drive_link]


	msrvtt_qa_answer_list.json [https://drive.google.com/file/d/131euz_dssRkDTk3-ioAS5ZsvIxS_Tt4M/view?usp=drive_link]


	msrvtt_mc_test.json [https://drive.google.com/file/d/13FrUQ2ZDsNDraP7lfnKvTArPIgdtHuLC/view?usp=drive_link]


	msrvtt_ret_train9k.json [https://drive.google.com/file/d/13OVo0XRdVWTHlFFxbKg3daYCHsMbJxyd/view?usp=drive_link]


	msrvtt_ret_train7k.json [https://drive.google.com/file/d/13ID97BX4ExO6mWPIUMp-GzXcPBkviSLx/view?usp=drive_link]


	msrvtt_ret_test1k.json [https://drive.google.com/file/d/13FLrjI-aleKeU7LbJMDrYgktX7MbTbzu/view?usp=drive_link]


	msrvtt_test1k.json [https://drive.google.com/file/d/12z6y-DNwIfICSzOhekbJwSbf7z2hlibE/view?usp=drive_link]






Step 2. Prepare Video Data

You can refer to the official website [https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/] of this dataset for basic information. Run the following commands to prepare the MSRVTT video files:

# Download original videos
bash download_msrvtt.sh
# Preprocess videos to lower FPS and dimensions
bash compress_msrvtt.sh





After completing the above preparation steps, the directory structure will be as follows:

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   └── msrvtt
│   │   ├── annotations
│   │   │   ├── msrvtt_qa_train.json
│   │   │   ├── msrvtt_qa_val.json
│   │   │   ├── msrvtt_qa_test.json
│   │   │   ├── msrvtt_qa_answer_list.json
│   │   │   ├── msrvtt_mc_test.json
│   │   │   ├── msrvtt_ret_train9k.json
│   │   │   ├── msrvtt_ret_train7k.json
│   │   │   ├── msrvtt_ret_test1k.json
│   │   │   └── msrvtt_test1k.json
│   │   └── videos_2fps_224
│   │       ├── video0.mp4
│   │       ├── video1.mp4
│   │       ├── ...
│   │       └── video9999.mp4
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Introduction


@inproceedings{li2021multisports,
  title={Multisports: A multi-person video dataset of spatio-temporally localized sports actions},
  author={Li, Yixuan and Chen, Lei and He, Runyu and Wang, Zhenzhi and Wu, Gangshan and Wang, Limin},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={13536--13545},
  year={2021}
}





For basic dataset information, please refer to the official project [https://deeperaction.github.io/datasets/multisports.html] and the paper [https://arxiv.org/abs/2105.07404].
Before we start, please make sure that the directory is located at $MMACTION2/tools/data/multisports/.



Step 1. Prepare Annotations

First of all, you have to download annotations and videos to $MMACTION2/data/multisports on the official website [https://github.com/MCG-NJU/MultiSports], please also download the Person Boxes and put it to $MMACTION2/data/multisports.



Step 2. Prepare Videos

Before this step, please make sure the folder structure looks like:

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── multisports
│   |   ├── MultiSports_box.zip
│   |   ├── trainval
│   |   |   ├── aerobic_gymnastics.zip
│   |   |   ├── basketball.zip
│   |   |   ├── multisports_GT.pkl
│   |   |   ├──...
│   |   ├── test
│   |   |   ├── aerobic_gymnastics.zip
│   |   |   ├── basketball.zip
│   |   |   ├──...





Then, you can use the following command to uncompress.

cd $MMACTION2/data/multisports/
unzip MultiSports_box.zip
cd $MMACTION2/data/multisports/trainval
find . -name '*.zip' -exec unzip {} \;
cd $MMACTION2/data/multisports/test
find . -name '*.zip' -exec unzip {} \;
cd $MMACTION2/tools/data/multisports/







Step 3. Convert Annotations

you can run the following script to convert annotations and proposals as we need.

cd $MMACTION2/tools/data/multisports/
python parse_anno.py







Step 5. Check Directory Structure

After the whole data process, you will get the videos and annotation files for MultiSports.

In the context of the whole project (for MultiSports only), the folder structure will look like:

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── multisports
│   |   ├── annotations
|   │   |   ├── multisports_dense_proposals_test.recall_96.13.pkl
|   │   |   ├── multisports_dense_proposals_train.recall_96.13.pkl
|   │   |   ├── multisports_dense_proposals_val.recall_96.13.pkl
|   │   |   ├── multisports_GT.pkl
|   │   |   ├── multisports_train.csv
|   │   |   ├── multisports_val.csv
│   |   ├── trainval
│   |   |   ├── aerobic_gymnastics
|   │   |   |   ├── v__wAgwttPYaQ_c001.mp4
|   │   |   |   ├── v__wAgwttPYaQ_c002.mp4
|   │   |   |   ├── ...
│   |   |   ├── basketball
|   │   |   |   ├── v_-6Os86HzwCs_c001.mp4
|   │   |   |   ├── v_-6Os86HzwCs_c002.mp4
|   │   |   |   ├── ...
│   |   |   ├── multisports_GT.pkl
│   |   |   ├──...
│   |   ├── test
│   |   |   ├── aerobic_gymnastics
|   │   |   |   ├── v_2KroSzspz-c_c001.mp4
|   │   |   |   ├── v_2KroSzspz-c_c002.mp4
|   │   |   |   ├── ...
│   |   |   ├── basketball
|   │   |   |   ├── v_1tefH1iPbGM_c001.mp4
|   │   |   |   ├── v_1tefH1iPbGM_c002.mp4
│   |   |   ├──...





We don’t need the zip files under the project, you can handle them as you want.
For training and evaluating on MultiSports, please refer to Training and Test Tutorial [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/user_guides/train_test.md].
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Introduction


@article{duan2020omni,
  title={Omni-sourced Webly-supervised Learning for Video Recognition},
  author={Duan, Haodong and Zhao, Yue and Xiong, Yuanjun and Liu, Wentao and Lin, Dahua},
  journal={arXiv preprint arXiv:2003.13042},
  year={2020}
}





We release a subset of the OmniSource web dataset used in the paper Omni-sourced Webly-supervised Learning for Video Recognition [https://arxiv.org/abs/2003.13042]. Since all web dataset in OmniSource are built based on the Kinetics-400 taxonomy, we select those web data related to the 200 classes in Mini-Kinetics subset (which is proposed in Rethinking Spatiotemporal Feature Learning: Speed-Accuracy Trade-offs in Video Classification [https://arxiv.org/pdf/1712.04851.pdf]).

We provide data from all sources that are related to the 200 classes in Mini-Kinetics (including Kinetics trimmed clips, Kinetics untrimmed videos, images from Google and Instagram, video clips from Instagram).  To obtain this dataset, please first fill in the request form [https://docs.google.com/forms/d/e/1FAIpQLSd8_GlmHzG8FcDbW-OEu__G7qLgOSYZpH-i5vYVJcu7wcb_TQ/viewform?usp=sf_link]. We will share the download link to you after your request is received. Since we release all data crawled from the web without any filtering, the dataset is large and it may take some time to download them. We describe the size of the datasets in the following table:




	Dataset Name
	#samples
	Size
	Teacher Model
	#samples after filtering
	#samples similar to k200_val





	k200_train
	76030
	45.6G
	N/A
	N/A
	N/A



	k200_val
	4838
	2.9G
	N/A
	N/A
	N/A



	googleimage_200
	3050880
	265.5G
	TSN-R50-8seg
	1188695
	967



	insimage_200
	3654650
	224.4G
	TSN-R50-8seg
	879726
	116



	insvideo_200
	732855
	1487.6G
	SlowOnly-8x8-R50
	330680
	956



	k200_raw_train
	76027
	963.5G
	SlowOnly-8x8-R50
	N/A
	N/A





The file structure of our uploaded OmniSource dataset looks like:

OmniSource/
├── annotations
│   ├── googleimage_200
│   │   ├── googleimage_200.txt                       File list of all valid images crawled from Google.
│   │   ├── tsn_8seg_googleimage_200_duplicate.txt    Positive file list of images crawled from Google, which is similar to a validation example.
│   │   ├── tsn_8seg_googleimage_200.txt              Positive file list of images crawled from Google, filtered by the teacher model.
│   │   └── tsn_8seg_googleimage_200_wodup.txt        Positive file list of images crawled from Google, filtered by the teacher model, after de-duplication.
│   ├── insimage_200
│   │   ├── insimage_200.txt
│   │   ├── tsn_8seg_insimage_200_duplicate.txt
│   │   ├── tsn_8seg_insimage_200.txt
│   │   └── tsn_8seg_insimage_200_wodup.txt
│   ├── insvideo_200
│   │   ├── insvideo_200.txt
│   │   ├── slowonly_8x8_insvideo_200_duplicate.txt
│   │   ├── slowonly_8x8_insvideo_200.txt
│   │   └── slowonly_8x8_insvideo_200_wodup.txt
│   ├── k200_actions.txt                              The list of action names of the 200 classes in MiniKinetics.
│   ├── K400_to_MiniKinetics_classidx_mapping.json    The index mapping from Kinetics-400 to MiniKinetics.
│   ├── kinetics_200
│   │   ├── k200_train.txt
│   │   └── k200_val.txt
│   ├── kinetics_raw_200
│   │   └── slowonly_8x8_kinetics_raw_200.json        Kinetics Raw Clips filtered by the teacher model.
│   └── webimage_200
│       └── tsn_8seg_webimage_200_wodup.txt           The union of `tsn_8seg_googleimage_200_wodup.txt` and `tsn_8seg_insimage_200_wodup.txt`
├── googleimage_200                                   (10 volumes)
│   ├── vol_0.tar
│   ├── ...
│   └── vol_9.tar
├── insimage_200                                      (10 volumes)
│   ├── vol_0.tar
│   ├── ...
│   └── vol_9.tar
├── insvideo_200                                      (20 volumes)
│   ├── vol_00.tar
│   ├── ...
│   └── vol_19.tar
├── kinetics_200_train
│   └── kinetics_200_train.tar
├── kinetics_200_val
│   └── kinetics_200_val.tar
└── kinetics_raw_200_train                            (16 volumes)
    ├── vol_0.tar
    ├── ...
    └── vol_15.tar







Data Preparation

For data preparation, you need to first download those data. For kinetics_200 and 3 web datasets: googleimage_200, insimage_200 and insvideo_200, you just need to extract each volume and merge their contents.

For Kinetics raw videos, since loading long videos is very heavy, you need to first trim it into clips. Here we provide a script named trim_raw_video.py. It trims a long video into 10-second clips and remove the original raw video. You can use it to trim the Kinetics raw video.

The data should be placed in data/OmniSource/. When data preparation finished, the folder structure of data/OmniSource looks like (We omit the files not needed in training & testing for simplicity):

data/OmniSource/
├── annotations
│   ├── googleimage_200
│   │   └── tsn_8seg_googleimage_200_wodup.txt    Positive file list of images crawled from Google, filtered by the teacher model, after de-duplication.
│   ├── insimage_200
│   │   └── tsn_8seg_insimage_200_wodup.txt
│   ├── insvideo_200
│   │   └── slowonly_8x8_insvideo_200_wodup.txt
│   ├── kinetics_200
│   │   ├── k200_train.txt
│   │   └── k200_val.txt
│   ├── kinetics_raw_200
│   │   └── slowonly_8x8_kinetics_raw_200.json    Kinetics Raw Clips filtered by the teacher model.
│   └── webimage_200
│       └── tsn_8seg_webimage_200_wodup.txt       The union of `tsn_8seg_googleimage_200_wodup.txt` and `tsn_8seg_insimage_200_wodup.txt`
├── googleimage_200
│   ├── 000
|   │   ├── 00
|   │   │   ├── 000001.jpg
|   │   │   ├── ...
|   │   │   └── 000901.jpg
|   │   ├── ...
|   │   ├── 19
│   ├── ...
│   └── 199
├── insimage_200
│   ├── 000
|   │   ├── abseil
|   │   │   ├── 1J9tKWCNgV_0.jpg
|   │   │   ├── ...
|   │   │   └── 1J9tKWCNgV_0.jpg
|   │   ├── abseiling
│   ├── ...
│   └── 199
├── insvideo_200
│   ├── 000
|   │   ├── abseil
|   │   │   ├── B00arxogubl.mp4
|   │   │   ├── ...
|   │   │   └── BzYsP0HIvbt.mp4
|   │   ├── abseiling
│   ├── ...
│   └── 199
├── kinetics_200_train
│   ├── 0074cdXclLU.mp4
|   ├── ...
|   ├── zzzlyL61Fyo.mp4
├── kinetics_200_val
│   ├── 01fAWEHzudA.mp4
|   ├── ...
|   ├── zymA_6jZIz4.mp4
└── kinetics_raw_200_train
│   ├── pref_
│   |   ├── ___dTOdxzXY
|   │   │   ├── part_0.mp4
|   │   │   ├── ...
|   │   │   ├── part_6.mp4
│   |   ├── ...
│   |   └── _zygwGDE2EM
│   ├── ...
│   └── prefZ
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Preparing Skeleton Dataset


@misc{duan2021revisiting,
      title={Revisiting Skeleton-based Action Recognition},
      author={Haodong Duan and Yue Zhao and Kai Chen and Dian Shao and Dahua Lin and Bo Dai},
      year={2021},
      eprint={2104.13586},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}






Introduction

We release the skeleton annotations used in Revisiting Skeleton-based Action Recognition [https://arxiv.org/abs/2104.13586]. By default, we use Faster-RCNN [https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person.py] with ResNet50 backbone for human detection and HRNet-w32 [https://github.com/open-mmlab/mmpose/blob/master/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w32_coco_256x192.py] for single person pose estimation. For FineGYM, we use Ground-Truth bounding boxes for the athlete instead of detection bounding boxes.



Prepare Annotations

We provide links to the pre-processed skeleton annotations, you can directly download them and use them for training & testing.


	NTURGB+D [2D Skeleton]: https://download.openmmlab.com/mmaction/v1.0/skeleton/data/ntu60_2d.pkl


	NTURGB+D [3D Skeleton]: https://download.openmmlab.com/mmaction/v1.0/skeleton/data/ntu60_3d.pkl


	NTURGB+D 120 [2D Skeleton]: https://download.openmmlab.com/mmaction/v1.0/skeleton/data/ntu120_2d.pkl


	NTURGB+D 120 [3D Skeleton]: https://download.openmmlab.com/mmaction/v1.0/skeleton/data/ntu120_3d.pkl


	GYM [2D Skeleton]: https://download.openmmlab.com/mmaction/v1.0/skeleton/data/gym_2d.pkl


	GYM 2D skeletons are extracted with ground-truth human bounding boxes, which can be downloaded with link [https://download.openmmlab.com/mmaction/pyskl/data/gym/gym_gt_bboxes.pkl]. Please cite PoseConv3D [https://arxiv.org/abs/2104.13586] if you use it in your project.






	UCF101 [2D Skeleton]: https://download.openmmlab.com/mmaction/v1.0/skeleton/data/ucf101_2d.pkl


	HMDB51 [2D Skeleton]: https://download.openmmlab.com/mmaction/v1.0/skeleton/data/hmdb51_2d.pkl


	Diving48 [2D Skeleton]: https://download.openmmlab.com/mmaction/v1.0/skeleton/data/diving48_2d.pkl


	Kinetics400 [2D Skeleton]: https://download.openmmlab.com/mmaction/v1.0/skeleton/data/k400_2d.pkl (Table of contents only, no skeleton annotations)




For Kinetics400, since the skeleton annotations are large, we do not provide the direct download links on aliyun. Please use the following link to download the k400_kpfiles_2d.zip and extract it under $MMACTION2/data/skeleton/kpfiles for Kinetics400 training & testing: https://openxlab.org.cn/datasets/OpenMMLab/Kinetics400-skeleton

If you want to generate 2D skeleton annotations of specified video, please install mmdetection and mmpose first, then use the following script to extract skeleton annotations of NTURGB+D video:

python ntu_pose_extraction.py S001C001P001R001A001_rgb.avi S001C001P001R001A001.pkl





please note that, due to the upgrade of mmpose, the inference results may have slight differences from the provided skeleton annotations.



The Format of Annotations

Each pickle file corresponds to an action recognition dataset. The content of a pickle file is a dictionary with two fields: split and annotations


	Split: The value of the split field is a dictionary: the keys are the split names, while the values are lists of video identifiers that belong to the specific clip.


	Annotations: The value of the annotations field is a list of skeleton annotations, each skeleton annotation is a dictionary, containing the following fields:


	frame_dir (str): The identifier of the corresponding video.


	total_frames (int): The number of frames in this video.


	img_shape (tuple[int]): The shape of a video frame, a tuple with two elements, in the format of (height, width). Only required for 2D skeletons.


	original_shape (tuple[int]): Same as img_shape.


	label (int): The action label.


	keypoint (np.ndarray, with shape [M x T x V x C]): The keypoint annotation. M: number of persons; T: number of frames (same as total_frames); V: number of keypoints (25 for NTURGB+D 3D skeleton, 17 for CoCo, 18 for OpenPose, etc. ); C: number of dimensions for keypoint coordinates (C=2 for 2D keypoint, C=3 for 3D keypoint).


	keypoint_score (np.ndarray, with shape [M x T x V]): The confidence score of keypoints. Only required for 2D skeletons.










Visualization

For skeleton data visualization, you need also to prepare the RGB videos. Please refer to [visualize_heatmap_volume] for detailed process. Here we provide some visualization examples from NTU-60 and FineGYM.



  
    	

   Pose Estimation Results 
  

  
  

  

  


    	

   Keypoint Heatmap Volume Visualization 
  

  
  

  

  


    	

   Limb Heatmap Volume Visualization 
  

  
  

  

  


  






Convert the NTU RGB+D raw skeleton data to our format (only applicable to GCN backbones)

Here we also provide the script for converting the NTU RGB+D raw skeleton data to our format.
First, download the raw skeleton data of NTU-RGBD 60 and NTU-RGBD 120 from https://github.com/shahroudy/NTURGB-D.

For NTU-RGBD 60, preprocess data and convert the data format with

python gen_ntu_rgbd_raw.py --data-path your_raw_nturgbd60_skeleton_path --ignored-sample-path NTU_RGBD_samples_with_missing_skeletons.txt --out-folder your_nturgbd60_output_path --task ntu60





For NTU-RGBD 120, preprocess data and convert the data format with

python gen_ntu_rgbd_raw.py --data-path your_raw_nturgbd120_skeleton_path --ignored-sample-path NTU_RGBD120_samples_with_missing_skeletons.txt --out-folder your_nturgbd120_output_path --task ntu120







Convert annotations from third-party projects

We provide scripts to convert skeleton annotations from third-party projects to MMAction2 formats:


	BABEL: babel2mma2.py




TODO:


	[x] FineGYM


	[x] NTU60_XSub


	[x] NTU120_XSub


	[x] NTU60_XView


	[x] NTU120_XSet


	[x] UCF101


	[x] HMDB51


	[x] Kinetics
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Preparing Something-Something V1


Introduction


@misc{goyal2017something,
      title={The "something something" video database for learning and evaluating visual common sense},
      author={Raghav Goyal and Samira Ebrahimi Kahou and Vincent Michalski and Joanna Materzyńska and Susanne Westphal and Heuna Kim and Valentin Haenel and Ingo Fruend and Peter Yianilos and Moritz Mueller-Freitag and Florian Hoppe and Christian Thurau and Ingo Bax and Roland Memisevic},
      year={2017},
      eprint={1706.04261},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}





For basic dataset information, you can refer to the dataset paper [https://arxiv.org/pdf/1706.04261.pdf].
Before we start, please make sure that the directory is located at $MMACTION2/tools/data/sthv1/.



Step 1. Prepare Annotations

Since the official website [https://20bn.com/datasets/something-something/v1] of Something-Something V1 is currently unavailable, you can download the annotations from third-part source to $MMACTION2/data/sthv1/ .



Step 2. Prepare RGB Frames

Since the official dataset doesn’t provide the original video data and only extracted RGB frames are available, you have to directly download RGB frames.

You can download all compressed file parts from third-part source  to $MMACTION2/data/sthv1/ and use the following command to uncompress.

cd $MMACTION2/data/sthv1/
cat 20bn-something-something-v1-?? | tar zx
cd $MMACTION2/tools/data/sthv1/





For users who only want to use RGB frames, you can skip to step 5 to generate file lists in the format of rawframes.
Since the prefix of official JPGs is “%05d.jpg” (e.g., “00001.jpg”), users need to add "filename_tmpl='{:05}.jpg'" to the dict of data.train, data.val and data.test in the config files related with sthv1 like this:

data = dict(
    videos_per_gpu=16,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        ann_file=ann_file_train,
        data_prefix=data_root,
        filename_tmpl='{:05}.jpg',
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        ann_file=ann_file_val,
        data_prefix=data_root_val,
        filename_tmpl='{:05}.jpg',
        pipeline=val_pipeline),
    test=dict(
        type=dataset_type,
        ann_file=ann_file_test,
        data_prefix=data_root_val,
        filename_tmpl='{:05}.jpg',
        pipeline=test_pipeline))







Step 3. Extract Flow

This part is optional if you only want to use RGB frames.

Before extracting, please refer to install.md [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/get_started/installation.md] for installing denseflow [https://github.com/open-mmlab/denseflow].

If you have plenty of SSD space, then we recommend extracting frames there for better I/O performance.

You can run the following script to soft link SSD.

# execute these two line (Assume the SSD is mounted at "/mnt/SSD/")
mkdir /mnt/SSD/sthv1_extracted/
ln -s /mnt/SSD/sthv1_extracted/ ../../../data/sthv1/rawframes





Then, you can run the following script to extract optical flow based on RGB frames.

cd $MMACTION2/tools/data/sthv1/
bash extract_flow.sh







Step 4. Encode Videos

This part is optional if you only want to use RGB frames.

You can run the following script to encode videos.

cd $MMACTION2/tools/data/sthv1/
bash encode_videos.sh







Step 5. Generate File List

You can run the follow script to generate file list in the format of rawframes and videos.

cd $MMACTION2/tools/data/sthv1/
bash generate_{rawframes, videos}_filelist.sh







Step 6. Check Directory Structure

After the whole data process for Something-Something V1 preparation,
you will get the rawframes (RGB + Flow), and annotation files for Something-Something V1.

In the context of the whole project (for Something-Something V1 only), the folder structure will look like:

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── sthv1
│   │   ├── sthv1_{train,val}_list_rawframes.txt
│   │   ├── sthv1_{train,val}_list_videos.txt
│   │   ├── annotations
│   |   ├── videos
│   |   |   ├── 1.mp4
│   |   |   ├── 2.mp4
│   |   |   ├──...
│   |   ├── rawframes
│   |   |   ├── 1
│   |   |   |   ├── 00001.jpg
│   |   |   |   ├── 00002.jpg
│   |   |   |   ├── ...
│   |   |   |   ├── flow_x_00001.jpg
│   |   |   |   ├── flow_x_00002.jpg
│   |   |   |   ├── ...
│   |   |   |   ├── flow_y_00001.jpg
│   |   |   |   ├── flow_y_00002.jpg
│   |   |   |   ├── ...
│   |   |   ├── 2
│   |   |   ├── ...






For training and evaluating on Something-Something V1, please refer to Training and Test Tutorial [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/user_guides/train_test.md].
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Preparing Something-Something V2


Introduction


@misc{goyal2017something,
      title={The "something something" video database for learning and evaluating visual common sense},
      author={Raghav Goyal and Samira Ebrahimi Kahou and Vincent Michalski and Joanna Materzyńska and Susanne Westphal and Heuna Kim and Valentin Haenel and Ingo Fruend and Peter Yianilos and Moritz Mueller-Freitag and Florian Hoppe and Christian Thurau and Ingo Bax and Roland Memisevic},
      year={2017},
      eprint={1706.04261},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}





For basic dataset information, you can refer to the dataset website [https://developer.qualcomm.com/software/ai-datasets/something-something].





Download by MIM






MIM supports downloading from OpenDataLab and preprocessing Something-Something V2 dataset with one command line.

# install OpenXlab CLI tools
pip install -U openxlab
# log in OpenXLab
openxlab login
# download and preprocess by MIM
mim download mmaction2 --dataset sthv2









Step 1. Prepare Annotations

First of all, you have to sign in and download annotations to $MMACTION2/data/sthv2/annotations on the official website [https://20bn.com/datasets/something-something/v2].
Before we start, please make sure that the directory is located at $MMACTION2/tools/data/sthv2/.

Step 2. Prepare Videos

Then, you can download all data parts to $MMACTION2/data/sthv2/ and use the following command to uncompress.

cd $MMACTION2/data/sthv2/
cat 20bn-something-something-v2-?? | tar zx
cd $MMACTION2/tools/data/sthv2/





Step 3. Extract RGB and Flow

This part is optional if you only want to use the video loader.

Before extracting, please refer to install.md [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/get_started/installation.md] for installing denseflow [https://github.com/open-mmlab/denseflow].

If you have plenty of SSD space, then we recommend extracting frames there for better I/O performance.

You can run the following script to soft link SSD.

# execute these two line (Assume the SSD is mounted at "/mnt/SSD/")
mkdir /mnt/SSD/sthv2_extracted/
ln -s /mnt/SSD/sthv2_extracted/ ../../../data/sthv2/rawframes





If you only want to play with RGB frames (since extracting optical flow can be time-consuming), consider running the following script to extract RGB-only frames using denseflow.

cd $MMACTION2/tools/data/sthv2/
bash extract_rgb_frames.sh





If you didn’t install denseflow, you can still extract RGB frames using OpenCV by the following script, but it will keep the original size of the images.

cd $MMACTION2/tools/data/sthv2/
bash extract_rgb_frames_opencv.sh





If both are required, run the following script to extract frames.

cd $MMACTION2/tools/data/sthv2/
bash extract_frames.sh





Step 4. Generate File List

you can run the follow script to generate file list in the format of rawframes and videos.

cd $MMACTION2/tools/data/sthv2/
bash generate_{rawframes, videos}_filelist.sh














Check Directory Structure

After the whole data process for Something-Something V2 preparation,
you will get the rawframes (RGB + Flow), videos and annotation files for Something-Something V2.

In the context of the whole project (for Something-Something V2 only), the folder structure will look like:

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── sthv2
│   │   ├── sthv2_{train,val}_list_rawframes.txt(Optional)
│   │   ├── sthv2_{train,val}_list_videos.txt
│   │   ├── annotations(Optional)
│   |   ├── videos
│   |   |   ├── 1.mp4
│   |   |   ├── 2.mp4
│   |   |   ├──...
│   |   ├── rawframes(Optional)
│   |   |   ├── 1
│   |   |   |   ├── img_00001.jpg
│   |   |   |   ├── img_00002.jpg
│   |   |   |   ├── ...
│   |   |   |   ├── flow_x_00001.jpg
│   |   |   |   ├── flow_x_00002.jpg
│   |   |   |   ├── ...
│   |   |   |   ├── flow_y_00001.jpg
│   |   |   |   ├── flow_y_00002.jpg
│   |   |   |   ├── ...
│   |   |   ├── 2
│   |   |   ├── ...






For training and evaluating on Something-Something V2, please refer to Training and Test Tutorial [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/user_guides/train_test.md].
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Preparing THUMOS’14


Introduction


@misc{THUMOS14,
    author = {Jiang, Y.-G. and Liu, J. and Roshan Zamir, A. and Toderici, G. and Laptev,
    I. and Shah, M. and Sukthankar, R.},
    title = {{THUMOS} Challenge: Action Recognition with a Large
    Number of Classes},
    howpublished = "\url{http://crcv.ucf.edu/THUMOS14/}",
    Year = {2014}
}





For basic dataset information, you can refer to the dataset website [https://www.crcv.ucf.edu/THUMOS14/download.html].
Before we start, please make sure that the directory is located at $MMACTION2/tools/data/thumos14/.



Step 1. Prepare Annotations

First of all, run the following script to prepare annotations.

cd $MMACTION2/tools/data/thumos14/
bash download_annotations.sh







Step 2. Prepare Videos

Then, you can run the following script to prepare videos.

cd $MMACTION2/tools/data/thumos14/
bash download_videos.sh







Step 3. Extract RGB and Flow

This part is optional if you only want to use the video loader.

Before extracting, please refer to install.md [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/get_started/installation.md] for installing denseflow [https://github.com/open-mmlab/denseflow].

If you have plenty of SSD space, then we recommend extracting frames there for better I/O performance.

You can run the following script to soft link SSD.

# execute these two line (Assume the SSD is mounted at "/mnt/SSD/")
mkdir /mnt/SSD/thumos14_extracted/
ln -s /mnt/SSD/thumos14_extracted/ ../data/thumos14/rawframes/





If you only want to play with RGB frames (since extracting optical flow can be time-consuming), consider running the following script to extract RGB-only frames using denseflow.

cd $MMACTION2/tools/data/thumos14/
bash extract_rgb_frames.sh





If you didn’t install denseflow, you can still extract RGB frames using OpenCV by the following script, but it will keep the original size of the images.

cd $MMACTION2/tools/data/thumos14/
bash extract_rgb_frames_opencv.sh





If both are required, run the following script to extract frames.

cd $MMACTION2/tools/data/thumos14/
bash extract_frames.sh tvl1







Step 4. Fetch File List

This part is optional if you do not use SSN model.

You can run the follow script to fetch pre-computed tag proposals.

cd $MMACTION2/tools/data/thumos14/
bash fetch_tag_proposals.sh







Step 5. Denormalize Proposal File

This part is optional if you do not use SSN model.

You can run the follow script to denormalize pre-computed tag proposals according to
actual number of local rawframes.

cd $MMACTION2/tools/data/thumos14/
bash denormalize_proposal_file.sh







Step 6. Check Directory Structure

After the whole data process for THUMOS’14 preparation,
you will get the rawframes (RGB + Flow), videos and annotation files for THUMOS’14.

In the context of the whole project (for THUMOS’14 only), the folder structure will look like:

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── thumos14
│   │   ├── proposals
│   │   |   ├── thumos14_tag_val_normalized_proposal_list.txt
│   │   |   ├── thumos14_tag_test_normalized_proposal_list.txt
│   │   ├── annotations_val
│   │   ├── annotations_test
│   │   ├── videos
│   │   │   ├── val
│   │   │   |   ├── video_validation_0000001.mp4
│   │   │   |   ├── ...
│   │   |   ├── test
│   │   │   |   ├── video_test_0000001.mp4
│   │   │   |   ├── ...
│   │   ├── rawframes
│   │   │   ├── val
│   │   │   |   ├── video_validation_0000001
|   │   │   |   │   ├── img_00001.jpg
|   │   │   |   │   ├── img_00002.jpg
|   │   │   |   │   ├── ...
|   │   │   |   │   ├── flow_x_00001.jpg
|   │   │   |   │   ├── flow_x_00002.jpg
|   │   │   |   │   ├── ...
|   │   │   |   │   ├── flow_y_00001.jpg
|   │   │   |   │   ├── flow_y_00002.jpg
|   │   │   |   │   ├── ...
│   │   │   |   ├── ...
│   │   |   ├── test
│   │   │   |   ├── video_test_0000001





For training and evaluating on THUMOS’14, please refer to Training and Test Tutorial [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/user_guides/train_test.md].
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Preparing UCF-101


Introduction


@article{Soomro2012UCF101AD,
  title={UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild},
  author={K. Soomro and A. Zamir and M. Shah},
  journal={ArXiv},
  year={2012},
  volume={abs/1212.0402}
}





For basic dataset information, you can refer to the dataset website [https://www.crcv.ucf.edu/research/data-sets/ucf101/].
Before we start, please make sure that the directory is located at $MMACTION2/tools/data/ucf101/.



Step 1. Prepare Annotations

First of all, you can run the following script to prepare annotations.

bash download_annotations.sh







Step 2. Prepare Videos

Then, you can run the following script to prepare videos.

bash download_videos.sh





For better decoding speed, you can resize the original videos into smaller sized, densely encoded version by:

python ../resize_videos.py ../../../data/ucf101/videos/ ../../../data/ucf101/videos_256p_dense_cache --dense --level 2 --ext avi







Step 3. Extract RGB and Flow

This part is optional if you only want to use the video loader.

Before extracting, please refer to install.md [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/get_started/installation.md] for installing denseflow [https://github.com/open-mmlab/denseflow].

If you have plenty of SSD space, then we recommend extracting frames there for better I/O performance. The extracted frames (RGB + Flow) will take up about 100GB.

You can run the following script to soft link SSD.

# execute these two line (Assume the SSD is mounted at "/mnt/SSD/")
mkdir /mnt/SSD/ucf101_extracted/
ln -s /mnt/SSD/ucf101_extracted/ ../../../data/ucf101/rawframes





If you only want to play with RGB frames (since extracting optical flow can be time-consuming), consider running the following script to extract RGB-only frames using denseflow.

bash extract_rgb_frames.sh





If you didn’t install denseflow, you can still extract RGB frames using OpenCV by the following script, but it will keep the original size of the images.

bash extract_rgb_frames_opencv.sh





If Optical Flow is also required, run the following script to extract flow using “tvl1” algorithm.

bash extract_frames.sh







Step 4. Generate File List

you can run the follow script to generate file list in the format of rawframes and videos.

bash generate_videos_filelist.sh
bash generate_rawframes_filelist.sh







Step 5. Check Directory Structure

After the whole data process for UCF-101 preparation,
you will get the rawframes (RGB + Flow), videos and annotation files for UCF-101.

In the context of the whole project (for UCF-101 only), the folder structure will look like:

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── ucf101
│   │   ├── ucf101_{train,val}_split_{1,2,3}_rawframes.txt
│   │   ├── ucf101_{train,val}_split_{1,2,3}_videos.txt
│   │   ├── annotations
│   │   ├── videos
│   │   │   ├── ApplyEyeMakeup
│   │   │   │   ├── v_ApplyEyeMakeup_g01_c01.avi

│   │   │   ├── YoYo
│   │   │   │   ├── v_YoYo_g25_c05.avi
│   │   ├── rawframes
│   │   │   ├── ApplyEyeMakeup
│   │   │   │   ├── v_ApplyEyeMakeup_g01_c01
│   │   │   │   │   ├── img_00001.jpg
│   │   │   │   │   ├── img_00002.jpg
│   │   │   │   │   ├── ...
│   │   │   │   │   ├── flow_x_00001.jpg
│   │   │   │   │   ├── flow_x_00002.jpg
│   │   │   │   │   ├── ...
│   │   │   │   │   ├── flow_y_00001.jpg
│   │   │   │   │   ├── flow_y_00002.jpg
│   │   │   ├── ...
│   │   │   ├── YoYo
│   │   │   │   ├── v_YoYo_g01_c01
│   │   │   │   ├── ...
│   │   │   │   ├── v_YoYo_g25_c05






For training and evaluating on UCF-101, please refer to Training and Test Tutorial [https://github.com/open-mmlab/mmaction2/blob/main/docs/en/user_guides/train_test.md].
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Preparing UCF101-24


Introduction


@article{Soomro2012UCF101AD,
  title={UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild},
  author={K. Soomro and A. Zamir and M. Shah},
  journal={ArXiv},
  year={2012},
  volume={abs/1212.0402}
}





For basic dataset information, you can refer to the dataset website [http://www.thumos.info/download.html].
Before we start, please make sure that the directory is located at $MMACTION2/tools/data/ucf101_24/.



Download and Extract

You can download the RGB frames, optical flow and ground truth annotations from google drive [https://drive.google.com/drive/folders/1BvGywlAGrACEqRyfYbz3wzlVV3cDFkct].
The data are provided from MOC [https://github.com/MCG-NJU/MOC-Detector/blob/master/readme/Dataset.md], which is adapted from act-detector [https://github.com/vkalogeiton/caffe/tree/act-detector] and corrected-UCF101-Annots [https://github.com/gurkirt/corrected-UCF101-Annots].


Note

The annotation of this UCF101-24 is from here [https://github.com/gurkirt/corrected-UCF101-Annots], which is more correct.



After downloading the UCF101_v2.tar.gz file and put it in $MMACTION2/tools/data/ucf101_24/, you can run the following command to uncompress.

tar -zxvf UCF101_v2.tar.gz







Check Directory Structure

After uncompressing, you will get the rgb-images directory, brox-images directory and UCF101v2-GT.pkl for UCF101-24.

In the context of the whole project (for UCF101-24 only), the folder structure will look like:

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── ucf101_24
│   |   ├── brox-images
│   |   |   ├── Basketball
│   |   |   |   ├── v_Basketball_g01_c01
│   |   |   |   |   ├── 00001.jpg
│   |   |   |   |   ├── 00002.jpg
│   |   |   |   |   ├── ...
│   |   |   |   |   ├── 00140.jpg
│   |   |   |   |   ├── 00141.jpg
│   |   |   ├── ...
│   |   |   ├── WalkingWithDog
│   |   |   |   ├── v_WalkingWithDog_g01_c01
│   |   |   |   ├── ...
│   |   |   |   ├── v_WalkingWithDog_g25_c04
│   |   ├── rgb-images
│   |   |   ├── Basketball
│   |   |   |   ├── v_Basketball_g01_c01
│   |   |   |   |   ├── 00001.jpg
│   |   |   |   |   ├── 00002.jpg
│   |   |   |   |   ├── ...
│   |   |   |   |   ├── 00140.jpg
│   |   |   |   |   ├── 00141.jpg
│   |   |   ├── ...
│   |   |   ├── WalkingWithDog
│   |   |   |   ├── v_WalkingWithDog_g01_c01
│   |   |   |   ├── ...
│   |   |   |   ├── v_WalkingWithDog_g25_c04
│   |   ├── UCF101v2-GT.pkl







Note

The UCF101v2-GT.pkl exists as a cache, it contains 6 items as follows:




	labels (list): List of the 24 labels.


	gttubes (dict): Dictionary that contains the ground truth tubes for each video.
A gttube is dictionary that associates with each index of label and a list of tubes.
A tube is a numpy array with nframes rows and 5 columns, each col is in format like <frame index> <x1> <y1> <x2> <y2>.


	nframes (dict): Dictionary that contains the number of frames for each video, like 'HorseRiding/v_HorseRiding_g05_c02': 151.


	train_videos (list): A list with nsplits=1 elements, each one containing the list of training videos.


	test_videos (list): A list with nsplits=1 elements, each one containing the list of testing videos.


	resolution (dict): Dictionary that outputs a tuple (h,w) of the resolution for each video, like 'FloorGymnastics/v_FloorGymnastics_g09_c03': (240, 320).
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Preparing Video Retrieval Datasets


Introduction


@inproceedings{xu2016msr,
      title={Msr-vtt: A large video description dataset for bridging video and language},
      author={Xu, Jun and Mei, Tao and Yao, Ting and Rui, Yong},
      booktitle={CVPR},
      pages={5288--5296},
      year={2016}
}





@inproceedings{chen2011collecting,
  title={Collecting highly parallel data for paraphrase evaluation},
  author={Chen, David and Dolan, William B},
  booktitle={ACL},
  pages={190--200},
  year={2011}
}





Before we start, please make sure that the directory is located at $MMACTION2/tools/data/video_retrieval/.



Preparing MSRVTT dataset

For basic dataset information, you can refer to the MSRVTT dataset website [https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/]. Run the following command to prepare the MSRVTT dataset:

bash prepare_msrvtt.sh





After preparation, the folder structure will look like:

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── video_retrieval
│   │   └── msrvtt
│   │       ├── train_9k.json
│   │       ├── train_7k.json
│   │       ├── test_JSFUSION.json
│   │       └─── videos
│   │           ├── video0.mp4
│   │           ├── video1.mp4
│   │           ├── ...
│   │           └── video9999.mp4







Preparing MSVD dataset

For basic dataset information, you can refer to the MSVD dataset website [https://www.cs.utexas.edu/users/ml/clamp/videoDescription/]. Run the following command to prepare the MSVD dataset:

bash prepare_msvd.sh





After preparation, the folder structure will look like:

mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── video_retrieval
│   │   └── msrvd
│   │       ├── train.json
│   │       ├── test.json
│   │       ├── val.json
│   │       └─── videos
│   │           ├── xxx.avi
│   │           ├── xxx.avi
│   │           ├── ...
│   │           └── xxx.avi
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Welcome to Projects of MMAction2

In this folder, we welcome all contributions of deep-learning video understanding models from the community.

Here, these requirements, e.g., code standards, are not as strict as in the core package. Thus, developers from the community can implement their algorithms much more easily and efficiently in MMAction2. We appreciate all contributions from the community to make MMAction2 greater.

Here is an example project about how to add your algorithms easily.

We also provide some documentation listed below:


	Contribution Guide [https://mmaction2.readthedocs.io/en/latest/get_started/contribution_guide.html]

The guides for new contributors about how to add your projects to MMAction2.



	Discussions [https://github.com/open-mmlab/mmaction2/discussions]

Welcome to start a discussion!







Example Project

This is an example README for community projects/. You can write your README in your own project. Here are
some recommended parts of a README for others to understand and use your project, you can copy or modify them
according to your project.


Usage


Setup Environment

Please refer to Get Started [https://mmaction2.readthedocs.io/en/latest/get_started/installation.html] to install MMAction2.

At first, add the current folder to PYTHONPATH, so that Python can find your code. Run command in the current directory to add it.


Please run it every time after you opened a new shell.




export PYTHONPATH=`pwd`:$PYTHONPATH







Data Preparation

Prepare the Kinetics400 dataset according to the instruction [https://github.com/open-mmlab/mmaction2/blob/main/tools/data/kinetics/README.md].



Training commands

To train with single GPU:

mim train mmaction configs/examplenet_r50-in1k-pre_8xb32-1x1x3-100e_kinetics400-rgb.py





To train with multiple GPUs:

mim train mmaction configs/examplenet_r50-in1k-pre_8xb32-1x1x3-100e_kinetics400-rgb.py --launcher pytorch --gpus 8





To train with multiple GPUs by slurm:

mim train mmaction configs/examplenet_r50-in1k-pre_8xb32-1x1x3-100e_kinetics400-rgb.py --launcher slurm \
    --gpus 8 --gpus-per-node 8 --partition $PARTITION







Testing commands

To test with single GPU:

mim test mmaction configs/examplenet_r50-in1k-pre_8xb32-1x1x3-100e_kinetics400-rgb.py --checkpoint $CHECKPOINT





To test with multiple GPUs:

mim test mmaction configs/examplenet_r50-in1k-pre_8xb32-1x1x3-100e_kinetics400-rgb.py --checkpoint $CHECKPOINT --launcher pytorch --gpus 8





To test with multiple GPUs by slurm:

mim test mmaction configs/examplenet_r50-in1k-pre_8xb32-1x1x3-100e_kinetics400-rgb.py --checkpoint $CHECKPOINT --launcher slurm \
    --gpus 8 --gpus-per-node 8 --partition $PARTITION








Results




	frame sampling strategy
	resolution
	gpus
	backbone
	pretrain
	top1 acc
	top5 acc
	testing protocol
	config
	ckpt
	log





	1x1x3
	224x224
	8
	ResNet50
	ImageNet
	72.83
	90.65
	25 clips x 10 crop
	config
	ckpt
	log







Citation


@misc{2020mmaction2,
  title={OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark},
  author={MMAction2 Contributors},
  howpublished = {\url{https://github.com/open-mmlab/mmaction2}},
  year={2020}
}







Checklist

Here is a checklist of this project’s progress, and you can ignore this part if you don’t plan to contribute to MMAction2 projects.


	[ ] Milestone 1: PR-ready, and acceptable to be one of the projects/.


	[ ] Finish the code




	[ ] Basic docstrings & proper citation




	[ ] Converted checkpoint and results (Only for reproduction)








	[ ] Milestone 2: Indicates a successful model implementation.


	[ ] Training results








	[ ] Milestone 3: Good to be a part of our core package!


	[ ] Unit tests




	[ ] Code style




	[ ] metafile.yml and README.md













Knowledge Distillation Based on MMRazor

Knowledge Distillation is a classic model compression method. The core idea is to “imitate” a teacher model (or multi-model ensemble) with better performance and more complex structure by guiding a lightweight student model, improving the performance of the student model without changing its structure. MMRazor [https://github.com/open-mmlab/mmrazor] is a model compression toolkit for model slimming and AutoML, which supports several KD algorithms. In this project, we take TSM-MobileNetV2 as an example to show how to use MMRazor to perform knowledge distillation on action recognition models. You could refer to more MMRazor [https://github.com/open-mmlab/mmrazor] for more model compression algorithms.


Description

This is an implementation of MMRazor Knowledge Distillation Application, we provide action recognition configs and models for MMRazor.



Usage


Prerequisites


	MMRazor v1.0.0 [https://github.com/open-mmlab/mmrazor/tree/v1.0.0] or higher




There are two install modes:

Option (a). Install as a Python package

mim install "mmrazor>=1.0.0"





Option (b). Install from source

git clone https://github.com/open-mmlab/mmrazor.git
cd mmrazor
pip install -v -e .







Setup Environment

Please refer to Get Started [https://mmaction2.readthedocs.io/en/latest/get_started/installation.html] to install MMAction2.

At first, add the current folder to PYTHONPATH, so that Python can find your code. Run command in the current directory to add it.


Please run it every time after you opened a new shell.




export PYTHONPATH=`pwd`:$PYTHONPATH







Data Preparation



Data Preparation

Prepare the Kinetics400 dataset according to the instruction [https://github.com/open-mmlab/mmaction2/blob/main/tools/data/kinetics/README.md].

Create a symbolic link from $MMACTION2/data to ./data in the current directory, so that Python can locate your data. Run the following command in the current directory to create the symbolic link.

ln -s ../../data ./data







Training commands

To train with single GPU:

mim train mmrazor configs/kd_logits_tsm-res50_tsm-mobilenetv2_8xb16_k400.py





To train with multiple GPUs:

mim train mmrazor configs/kd_logits_tsm-res50_tsm-mobilenetv2_8xb16_k400.py --launcher pytorch --gpus 8





To train with multiple GPUs by slurm:

mim train mmrazor configs/kd_logits_tsm-res50_tsm-mobilenetv2_8xb16_k400.py --launcher slurm \
    --gpus 8 --gpus-per-node 8 --partition $PARTITION







Testing commands

Please convert the knowledge distillation checkpoint to student-only checkpoint with following commands, you will get a checkpoint with a ‘_student.pth’ suffix under the same directory as the original checkpoint. Then take the student-only checkpoint for testing.

mim run mmrazor convert_kd_ckpt_to_student $CHECKPOINT





To test with single GPU:

mim test mmaction tsm_imagenet-pretrained-mobilenetv2_8xb16-1x1x8-100e_kinetics400-rgb.py --checkpoint $CHECKPOINT





To test with multiple GPUs:

mim test mmaction tsm_imagenet-pretrained-mobilenetv2_8xb16-1x1x8-100e_kinetics400-rgb.py --checkpoint $CHECKPOINT --launcher pytorch --gpus 8





To test with multiple GPUs by slurm:

mim test mmaction tsm_imagenet-pretrained-mobilenetv2_8xb16-1x1x8-100e_kinetics400-rgb.py --checkpoint $CHECKPOINT --launcher slurm \
    --gpus 8 --gpus-per-node 8 --partition $PARTITION








Results and models




	Location
	Dataset
	Teacher
	Student
	Acc
	Acc(T)
	Acc(S)
	Config
	Download





	logits
	Kinetics-400
	[TSM-ResNet50]
	[TSM-MobileNetV2]
	69.60(+0.9)
	73.22
	68.71
	[config][distill_tsm]
	[teacher][tsm_r50_pth] | [model][distill_pth_tsm] | [log][distill_log_tsm]



	logits
	Kinetics-400
	[TSN-Swin]
	[TSN-ResNet50]
	75.54(+1.4)
	79.22
	74.12
	[config][distill_tsn]
	[teacher][tsn_swin_pth] | [model][distill_pth_tsn] | [log][distill_log_tsn]







Citation

@article{huang2022knowledge,
  title={Knowledge Distillation from A Stronger Teacher},
  author={Huang, Tao and You, Shan and Wang, Fei and Qian, Chen and Xu, Chang},
  journal={arXiv preprint arXiv:2205.10536},
  year={2022}
}








UMT Project

Unmasked Teacher: Towards Training-Efficient Video Foundation Models [https://arxiv.org/abs/2303.16058]



Abstract


Video Foundation Models (VFMs) have received limited exploration due to high computational costs and data scarcity. Previous VFMs rely on Image Foundation Models (IFMs), which face challenges in transferring to the video domain. Although VideoMAE has trained a robust ViT from limited data, its low-level reconstruction poses c