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CHAPTER

ONE

PREREQUISITES

In this section we demonstrate how to prepare an environment with PyTorch.

MMAction2 works on Linux, Windows and macOS. It requires Python 3.7+, CUDA 9.2+ and PyTorch 1.6+.

Note: If you are experienced with PyTorch and have already installed it, just skip this part and jump to the next section.
Otherwise, you can follow these steps for the preparation.

Step 1. Download and install Miniconda from the official website.

Step 2. Create a conda environment and activate it.

conda create --name openmmlab python=3.8 -y
conda activate openmmlab

Step 3. Install PyTorch following official instructions, e.g.

On GPU platforms:

conda install pytorch torchvision -c pytorch

Warning: This command will automatically install the latest version PyTorch and cudatoolkit, please check
whether they match your environment.

On CPU platforms:

conda install pytorch torchvision cpuonly -c pytorch

3

https://docs.conda.io/en/latest/miniconda.html
https://pytorch.org/get-started/locally/


MMAction2, Release 1.0.0rc3

4 Chapter 1. Prerequisites



CHAPTER

TWO

INSTALLATION

We recommend that users follow our best practices to install MMAction2. However, the whole process is highly
customizable. See Customize Installation section for more information.

2.1 Best Practices

Step 1. Install MMEngine and MMCV using MIM.

pip install -U openmim
mim install mmengine 'mmcv>=2.0.0rc1'

Note that some of the demo scripts in MMAction2 require MMDetection (mmdet) for human detection, and MMPose
for pose estimation. If you want to run these demo scripts, you can easily install mmdet and mmpose as dependencies
by running:

mim install "mmdet>=3.0.0rc5"
mim install "mmpose>=1.0.0rc0"

Step 2. Install MMAction2.

According to your needs, we support two install modes:

• Install from source (Recommended): You want to develop your own action recognition task or new features
on MMAction2 framework. For example, adding new dataset or new models. Thus, you can use all tools we
provided.

• Install as a Python package: You just want to call MMAction2’s APIs or import MMAction2’s modules in your
project.

2.1.1 Install from source

In this case, install mmaction2 from source:

git clone https://github.com/open-mmlab/mmaction2.git
cd mmaction2
git checkout 1.x
pip install -v -e .
# "-v" means verbose, or more output
# "-e" means installing a project in editable mode,
# thus any local modifications made to the code will take effect without re-installation.
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Optionally, if you want to contribute to MMAction2 or experience experimental functions, please checkout to the
dev-1.x branch:

git checkout dev-1.x

2.1.2 Install as a Python package

Just install with pip.

pip install "mmaction2>=1.0rc0"

2.2 Verify the installation

To verify whether MMAction2 is installed correctly, we provide some sample codes to run an inference demo.

Step 1. Download the config and checkpoint files.

mim download mmaction2 --config tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-
→˓rgb --dest .

Step 2. Verify the inference demo.

Option (a). If you install mmaction2 from source, you can run the following command:

# The demo.mp4 and label_map_k400.txt are both from Kinetics-400
python demo/demo.py tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb.py \

tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb_20220906-2692d16c.pth \
demo/demo.mp4 tools/data/kinetics/label_map_k400.txt

You will see the top-5 labels with corresponding scores in your terminal.

Option (b). If you install mmaction2 as a python package, you can run the following codes in your python interpreter,
which will do the similar verification:

from operator import itemgetter
from mmaction.apis import init_recognizer, inference_recognizer

config_file = 'tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb.py'
checkpoint_file = 'tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb_20220906-
→˓2692d16c.pth'
video_file = 'demo/demo.mp4'
label_file = 'tools/data/kinetics/label_map_k400.txt'
model = init_recognizer(config_file, checkpoint_file, device='cpu') # or device='cuda:0'
pred_result = inference_recognizer(model, video_file)

pred_scores = pred_result.pred_scores.item.tolist()
score_tuples = tuple(zip(range(len(pred_scores)), pred_scores))
score_sorted = sorted(score_tuples, key=itemgetter(1), reverse=True)
top5_label = score_sorted[:5]

labels = open(label_file).readlines()
labels = [x.strip() for x in labels]

(continues on next page)

6 Chapter 2. Installation



MMAction2, Release 1.0.0rc3

(continued from previous page)

results = [(labels[k[0]], k[1]) for k in top5_label]

print('The top-5 labels with corresponding scores are:')
for result in results:

print(f'{result[0]}: ', result[1])

2.3 Customize Installation

2.3.1 CUDA versions

When installing PyTorch, you may need to specify the version of CUDA. If you are not clear on which to choose, follow
our recommendations:

• For Ampere-based NVIDIA GPUs, such as GeForce 30 series and NVIDIA A100, CUDA 11 is a must.

• For older NVIDIA GPUs, CUDA 11 is backward compatible, but CUDA 10.2 offers better compatibility and is
more lightweight.

Please make sure the GPU driver satisfies the minimum version requirements. See this table for more information.

Note: Installing CUDA runtime libraries is enough if you follow our best practices, because no CUDA code will be
compiled locally. However if you hope to compile MMCV from source or develop other CUDA operators, you need to
install the complete CUDA toolkit from NVIDIA’s website, and its version should match the CUDA version of PyTorch.
i.e., the specified version of cudatoolkit in conda install command.

2.3.2 Install MMCV without MIM

MMCV contains C++ and CUDA extensions, so it depends on PyTorch in a complex way. MIM solves such depen-
dencies automatically and makes the installation easier. However, it is not a must.

To install MMCV with pip instead of MIM, please follow MMCV installation guides. This requires manually specifying
a find-url based on PyTorch version and its CUDA version.

For example, the following command install mmcv built for PyTorch 1.10.x and CUDA 11.3.

pip install 'mmcv>=2.0.0rc1' -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/
→˓index.html

2.3.3 Install on CPU-only platforms

MMAction2 can be built for CPU-only environment. In CPU mode you can train, test or inference a model.

Some functionalities are gone in this mode, usually GPU-compiled ops. But don’t worry, almost all models in MMAc-
tion2 don’t depend on these ops.

2.3. Customize Installation 7
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2.3.4 Using MMAction2 with Docker

We provide a Dockerfile to build an image. Ensure that your docker version >=19.03.

# build an image with PyTorch 1.6.0, CUDA 10.1, CUDNN 7.
# If you prefer other versions, just modified the Dockerfile
docker build -f ./docker/Dockerfile --rm -t mmaction2 .

Run it with

docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmaction2/data mmaction2

8 Chapter 2. Installation
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CHAPTER

THREE

TUTORIAL 1: LEARN ABOUT CONFIGS

We use python files as configs, incorporate modular and inheritance design into our config system, which is convenient
to conduct various experiments. You can find all the provided configs under $MMAction2/configs. If you wish to
inspect the config file, you may run python tools/analysis_tools/print_config.py /PATH/TO/CONFIG to
see the complete config.

• Modify config through script arguments

• Config File Structure

• Config File Naming Convention

– Config System for Action Recognition

– Config System for Spatio-Temporal Action Detection

– Config System for Action localization

3.1 Modify config through script arguments

When submitting jobs using tools/train.py or tools/test.py, you may specify --cfg-options to in-place
modify the config.

• Update config keys of dict.

The config options can be specified following the order of the dict keys in the original config. For example,
--cfg-options model.backbone.norm_eval=False changes the all BN modules in model backbones to
train mode.

• Update keys inside a list of configs.

Some config dicts are composed as a list in your config. For example, the training pipeline train_pipeline
is normally a list e.g. [dict(type='SampleFrames'), ...]. If you want to change 'SampleFrames'
to 'DenseSampleFrames' in the pipeline, you may specify --cfg-options train_pipeline.0.
type=DenseSampleFrames.

• Update values of list/tuples.

If the value to be updated is a list or a tuple. For example, the config file normally sets model.
data_preprocessor.mean=[123.675, 116.28, 103.53]. If you want to change this key, you may specify
--cfg-options model.data_preprocessor.mean="[128,128,128]". Note that the quotation mark ” is
necessary to support list/tuple data types.

9
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3.2 Config File Structure

There are 3 basic component types under configs/_base_, models, schedules, default_runtime. Many methods could
be easily constructed with one of each like TSN, I3D, SlowOnly, etc. The configs that are composed by components
from _base_ are called primitive.

For all configs under the same folder, it is recommended to have only one primitive config. All other configs should
inherit from the primitive config. In this way, the maximum of inheritance level is 3.

For easy understanding, we recommend contributors to inherit from exiting methods. For example, if some modi-
fication is made based on TSN, users may first inherit the basic TSN structure by specifying _base_ = ../tsn/
tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py, then modify the necessary fields
in the config files.

If you are building an entirely new method that does not share the structure with any of the existing methods, you may
create a folder under configs/TASK.

Please refer to mmengine for detailed documentation.

3.3 Config File Naming Convention

We follow the style below to name config files. Contributors are advised to follow the same style. The config file names
are divided into several parts. Logically, different parts are concatenated by underscores '_', and settings in the same
part are concatenated by dashes '-'.

{algorithm info}_{module info}_{training info}_{data info}.py

{xxx} is required field and [yyy] is optional.

• {algorithm info}:

– {model}: model type, e.g. tsn, i3d, swin, vit, etc.

– [model setting]: specific setting for some models, e.g. base, p16, w877, etc.

• {module info}:

– [pretained info]: pretrained information, e.g. kinetics400-pretrained, in1k-pre, etc.

– {backbone}: backbone type. e.g. r50 (ResNet-50), etc.

– [backbone setting]: specific setting for some backbones, e.g. nl-dot-product, bnfrozen, nopool,
etc.

• {training info}:

– {gpu x batch_per_gpu]}: GPUs and samples per GPU.

– {pipeline setting}: frame sample setting, e.g. dense, {clip_len}x{frame_interval}x{num_clips},
u48, etc.

– {schedule}: training schedule, e.g. coslr-20e.

• {data info}:

– {dataset}: dataset name, e.g. kinetics400, mmit, etc.

– {modality}: data modality, e.g. rgb, flow, keypoint-2d, etc.

10 Chapter 3. Tutorial 1: Learn about Configs
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3.3.1 Config System for Action Recognition

We incorporate modular design into our config system, which is convenient to conduct various experiments.

• An Example of TSN

To help the users have a basic idea of a complete config structure and the modules in an action recognition system,
we make brief comments on the config of TSN as the following. For more detailed usage and alternative for per
parameter in each module, please refer to the API documentation.

# model settings
model = dict( # Config of the model

type='Recognizer2D', # Class name of the recognizer
backbone=dict( # Dict for backbone

type='ResNet', # Name of the backbone
pretrained='torchvision://resnet50', # The url/site of the pretrained model
depth=50, # Depth of ResNet model
norm_eval=False), # Whether to set BN layers to eval mode when training

cls_head=dict( # Dict for classification head
type='TSNHead', # Name of classification head
num_classes=400, # Number of classes to be classified.
in_channels=2048, # The input channels of classification head.
spatial_type='avg', # Type of pooling in spatial dimension
consensus=dict(type='AvgConsensus', dim=1), # Config of consensus module
dropout_ratio=0.4, # Probability in dropout layer
init_std=0.01, # Std value for linear layer initiation
average_clips='prob'), # Method to average multiple clip results

data_preprocessor=dict( # Dict for data preprocessor
type='ActionDataPreprocessor', # Name of data preprocessor
mean=[123.675, 116.28, 103.53], # Mean values of different channels to␣

→˓normalize
std=[58.395, 57.12, 57.375], # Std values of different channels to␣

→˓normalize
format_shape='NCHW'), # Final image shape format

# model training and testing settings
train_cfg=None, # Config of training hyperparameters for TSN
test_cfg=None) # Config for testing hyperparameters for TSN.

# dataset settings
dataset_type = 'RawframeDataset' # Type of dataset for training, validation and␣
→˓testing
data_root = 'data/kinetics400/rawframes_train/' # Root path to data for training
data_root_val = 'data/kinetics400/rawframes_val/' # Root path to data for␣
→˓validation and testing
ann_file_train = 'data/kinetics400/kinetics400_train_list_rawframes.txt' # Path to␣
→˓the annotation file for training
ann_file_val = 'data/kinetics400/kinetics400_val_list_rawframes.txt' # Path to the␣
→˓annotation file for validation
ann_file_test = 'data/kinetics400/kinetics400_val_list_rawframes.txt' # Path to␣
→˓the annotation file for testing

train_pipeline = [ # Training data processing pipeline
dict( # Config of SampleFrames

type='SampleFrames', # Sample frames pipeline, sampling frames from video
(continues on next page)
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(continued from previous page)

clip_len=1, # Frames of each sampled output clip
frame_interval=1, # Temporal interval of adjacent sampled frames
num_clips=3), # Number of clips to be sampled

dict( # Config of RawFrameDecode
type='RawFrameDecode'), # Load and decode Frames pipeline, picking raw␣

→˓frames with given indices
dict( # Config of Resize

type='Resize', # Resize pipeline
scale=(-1, 256)), # The scale to resize images

dict( # Config of MultiScaleCrop
type='MultiScaleCrop', # Multi scale crop pipeline, cropping images with a␣

→˓list of randomly selected scales
input_size=224, # Input size of the network
scales=(1, 0.875, 0.75, 0.66), # Scales of width and height to be selected
random_crop=False, # Whether to randomly sample cropping bbox
max_wh_scale_gap=1), # Maximum gap of w and h scale levels

dict( # Config of Resize
type='Resize', # Resize pipeline
scale=(224, 224), # The scale to resize images
keep_ratio=False), # Whether to resize with changing the aspect ratio

dict( # Config of Flip
type='Flip', # Flip Pipeline
flip_ratio=0.5), # Probability of implementing flip

dict( # Config of FormatShape
type='FormatShape', # Format shape pipeline, Format final image shape to␣

→˓the given input_format
input_format='NCHW'), # Final image shape format

dict(type='PackActionInputs') # Config of PackActionInputs
]
val_pipeline = [ # Validation data processing pipeline

dict( # Config of SampleFrames
type='SampleFrames', # Sample frames pipeline, sampling frames from video
clip_len=1, # Frames of each sampled output clip
frame_interval=1, # Temporal interval of adjacent sampled frames
num_clips=3, # Number of clips to be sampled
test_mode=True), # Whether to set test mode in sampling

dict( # Config of RawFrameDecode
type='RawFrameDecode'), # Load and decode Frames pipeline, picking raw␣

→˓frames with given indices
dict( # Config of Resize

type='Resize', # Resize pipeline
scale=(-1, 256)), # The scale to resize images

dict( # Config of CenterCrop
type='CenterCrop', # Center crop pipeline, cropping the center area from␣

→˓images
crop_size=224), # The size to crop images

dict( # Config of Flip
type='Flip', # Flip pipeline
flip_ratio=0), # Probability of implementing flip

dict( # Config of FormatShape
type='FormatShape', # Format shape pipeline, Format final image shape to␣

→˓the given input_format

(continues on next page)
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(continued from previous page)

input_format='NCHW'), # Final image shape format
dict(type='PackActionInputs') # Config of PackActionInputs

]
test_pipeline = [ # Testing data processing pipeline

dict( # Config of SampleFrames
type='SampleFrames', # Sample frames pipeline, sampling frames from video
clip_len=1, # Frames of each sampled output clip
frame_interval=1, # Temporal interval of adjacent sampled frames
num_clips=25, # Number of clips to be sampled
test_mode=True), # Whether to set test mode in sampling

dict( # Config of RawFrameDecode
type='RawFrameDecode'), # Load and decode Frames pipeline, picking raw␣

→˓frames with given indices
dict( # Config of Resize

type='Resize', # Resize pipeline
scale=(-1, 256)), # The scale to resize images

dict( # Config of TenCrop
type='TenCrop', # Ten crop pipeline, cropping ten area from images
crop_size=224), # The size to crop images

dict( # Config of Flip
type='Flip', # Flip pipeline
flip_ratio=0), # Probability of implementing flip

dict( # Config of FormatShape
type='FormatShape', # Format shape pipeline, Format final image shape to␣

→˓the given input_format
input_format='NCHW'), # Final image shape format

dict(type='PackActionInputs') # Config of PackActionInputs
]

train_dataloader = dict( # Config of train dataloader
batch_size=32, # Batch size of each single GPU during training
num_workers=8, # Workers to pre-fetch data for each single GPU during training
persistent_workers=True, # If `True`, the dataloader will not shut down the␣

→˓worker processes after an epoch end, which can accelerate training speed
sampler=dict(

type='DefaultSampler', # DefaultSampler which supports both distributed␣
→˓and non-distributed training. Refer to https://github.com/open-mmlab/mmengine/
→˓blob/main/mmengine/dataset/sampler.py

shuffle=True), # Randomly shuffle the training data in each epoch
dataset=dict( # Config of train dataset

type=dataset_type,
ann_file=ann_file_train, # Path of annotation file
data_prefix=dict(img=data_root), # Prefix of frame path
pipeline=train_pipeline))

val_dataloader = dict( # Config of validation dataloader
batch_size=1, # Batch size of each single GPU during validation
num_workers=8, # Workers to pre-fetch data for each single GPU during␣

→˓validation
persistent_workers=True, # If `True`, the dataloader will not shut down the␣

→˓worker processes after an epoch end
sampler=dict(

type='DefaultSampler',

(continues on next page)
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(continued from previous page)

shuffle=False), # Not shuffle during validation and testing
dataset=dict( # Config of validation dataset

type=dataset_type,
ann_file=ann_file_val, # Path of annotation file
data_prefix=dict(img=data_root_val), # Prefix of frame path
pipeline=val_pipeline,
test_mode=True))

test_dataloader = dict( # Config of test dataloader
batch_size=32, # Batch size of each single GPU during testing
num_workers=8, # Workers to pre-fetch data for each single GPU during testing
persistent_workers=True, # If `True`, the dataloader will not shut down the␣

→˓worker processes after an epoch end
sampler=dict(

type='DefaultSampler',
shuffle=False), # Not shuffle during validation and testing

dataset=dict( # Config of test dataset
type=dataset_type,
ann_file=ann_file_val, # Path of annotation file
data_prefix=dict(img=data_root_val), # Prefix of frame path
pipeline=test_pipeline,
test_mode=True))

# evaluation settings
val_evaluator = dict(type='AccMetric') # Config of validation evaluator
test_evaluator = val_evaluator # Config of testing evaluator

train_cfg = dict( # Config of training loop
type='EpochBasedTrainLoop', # Name of training loop
max_epochs=100, # Total training epochs
val_begin=1, # The epoch that begins validating
val_interval=1) # Validation interval

val_cfg = dict( # Config of validation loop
type='ValLoop') # Name of validation loop

test_cfg = dict( # Config of testing loop
type='TestLoop') # Name of testing loop

# learning policy
param_scheduler = [ # Parameter scheduler for updating optimizer parameters,␣
→˓support dict or list

dict(type='MultiStepLR', # Decays the learning rate once the number of epoch␣
→˓reaches one of the milestones

begin=0, # Step at which to start updating the learning rate
end=100, # Step at which to stop updating the learning rate
by_epoch=True, # Whether the scheduled learning rate is updated by epochs
milestones=[40, 80], # Steps to decay the learning rate
gamma=0.1)] # Multiplicative factor of learning rate decay

# optimizer
optim_wrapper = dict( # Config of optimizer wrapper

type='OptimWrapper', # Name of optimizer wrapper, switch to AmpOptimWrapper to␣
→˓enable mixed precision training

optimizer=dict( # Config of optimizer. Support all kinds of optimizers in␣
→˓PyTorch. Refer to https://pytorch.org/docs/stable/optim.html#algorithms(continues on next page)
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(continued from previous page)

type='SGD', # Name of optimizer
lr=0.01, # Learning rate
momentum=0.9, # Momentum factor
weight_decay=0.0001), # Weight decay

clip_grad=dict(max_norm=40, norm_type=2)) # Config of gradient clip

# runtime settings
default_scope = 'mmaction' # The default registry scope to find modules. Refer to␣
→˓https://mmengine.readthedocs.io/en/latest/tutorials/registry.html
default_hooks = dict( # Hooks to execute default actions like updating model␣
→˓parameters and saving checkpoints.

runtime_info=dict(type='RuntimeInfoHook'), # The hook to updates runtime␣
→˓information into message hub

timer=dict(type='IterTimerHook'), # The logger used to record time spent␣
→˓during iteration

logger=dict(
type='LoggerHook', # The logger used to record logs during training/

→˓validation/testing phase
interval=20, # Interval to print the log
ignore_last=False), # Ignore the log of last iterations in each epoch

param_scheduler=dict(type='ParamSchedulerHook'), # The hook to update some␣
→˓hyper-parameters in optimizer

checkpoint=dict(
type='CheckpointHook', # The hook to save checkpoints periodically
interval=3, # The saving period
save_best='auto', # Specified metric to mearsure the best checkpoint␣

→˓during evaluation
max_keep_ckpts=3), # The maximum checkpoints to keep

sampler_seed=dict(type='DistSamplerSeedHook'), # Data-loading sampler for␣
→˓distributed training

sync_buffers=dict(type='SyncBuffersHook')) # Synchronize model buffers at the␣
→˓end of each epoch
env_cfg = dict( # Dict for setting environment

cudnn_benchmark=False, # Whether to enable cudnn benchmark
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), # Parameters to␣

→˓setup multiprocessing
dist_cfg=dict(backend='nccl')) # Parameters to setup distributed environment,␣

→˓the port can also be set

log_processor = dict(
type='LogProcessor', # Log processor used to format log information
window_size=20, # Default smooth interval
by_epoch=True) # Whether to format logs with epoch type

vis_backends = [ # List of visualization backends
dict(type='LocalVisBackend')] # Local visualization backend

visualizer = dict( # Config of visualizer
type='ActionVisualizer', # Name of visualizer
vis_backends=vis_backends)

log_level = 'INFO' # The level of logging
load_from = None # Load model checkpoint as a pre-trained model from a given path.␣
→˓This will not resume training.
resume = False # Whether to resume from the checkpoint defined in `load_from`. If␣
→˓`load_from` is None, it will resume the latest checkpoint in the `work_dir`.(continues on next page)
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(continued from previous page)

3.3.2 Config System for Spatio-Temporal Action Detection

We incorporate modular design into our config system, which is convenient to conduct various experiments.

• An Example of FastRCNN

To help the users have a basic idea of a complete config structure and the modules in a spatio-temporal action
detection system, we make brief comments on the config of FastRCNN as the following. For more detailed usage
and alternative for per parameter in each module, please refer to the API documentation.

# model setting
model = dict( # Config of the model

type='FastRCNN', # Class name of the detector
_scope_='mmdet', # The scope of current config
backbone=dict( # Dict for backbone

type='ResNet3dSlowOnly', # Name of the backbone
depth=50, # Depth of ResNet model
pretrained=None, # The url/site of the pretrained model
pretrained2d=False, # If the pretrained model is 2D
lateral=False, # If the backbone is with lateral connections
num_stages=4, # Stages of ResNet model
conv1_kernel=(1, 7, 7), # Conv1 kernel size
conv1_stride_t=1, # Conv1 temporal stride
pool1_stride_t=1, # Pool1 temporal stride
spatial_strides=(1, 2, 2, 1)), # The spatial stride for each ResNet stage

roi_head=dict( # Dict for roi_head
type='AVARoIHead', # Name of the roi_head
bbox_roi_extractor=dict( # Dict for bbox_roi_extractor

type='SingleRoIExtractor3D', # Name of the bbox_roi_extractor
roi_layer_type='RoIAlign', # Type of the RoI op
output_size=8, # Output feature size of the RoI op
with_temporal_pool=True), # If temporal dim is pooled

bbox_head=dict( # Dict for bbox_head
type='BBoxHeadAVA', # Name of the bbox_head
in_channels=2048, # Number of channels of the input feature
num_classes=81, # Number of action classes + 1
multilabel=True, # If the dataset is multilabel
dropout_ratio=0.5), # The dropout ratio used

data_preprocessor=dict( # Dict for data preprocessor
type='ActionDataPreprocessor', # Name of data preprocessor
mean=[123.675, 116.28, 103.53], # Mean values of different channels to␣

→˓normalize
std=[58.395, 57.12, 57.375], # Std values of different channels to␣

→˓normalize
format_shape='NCHW')), # Final image shape format

# model training and testing settings
train_cfg=dict( # Training config of FastRCNN

rcnn=dict( # Dict for rcnn training config
assigner=dict( # Dict for assigner

type='MaxIoUAssignerAVA', # Name of the assigner
(continues on next page)
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pos_iou_thr=0.9, # IoU threshold for positive examples, > pos_iou_
→˓thr -> positive

neg_iou_thr=0.9, # IoU threshold for negative examples, < neg_iou_
→˓thr -> negative

min_pos_iou=0.9), # Minimum acceptable IoU for positive examples
sampler=dict( # Dict for sample

type='RandomSampler', # Name of the sampler
num=32, # Batch Size of the sampler
pos_fraction=1, # Positive bbox fraction of the sampler
neg_pos_ub=-1, # Upper bound of the ratio of num negative to num␣

→˓positive
add_gt_as_proposals=True), # Add gt bboxes as proposals

pos_weight=1.0)), # Loss weight of positive examples
test_cfg=dict(rcnn=None)) # Testing config of FastRCNN

# dataset settings
dataset_type = 'AVADataset' # Type of dataset for training, validation and testing
data_root = 'data/ava/rawframes' # Root path to data
anno_root = 'data/ava/annotations' # Root path to annotations

ann_file_train = f'{anno_root}/ava_train_v2.1.csv' # Path to the annotation file␣
→˓for training
ann_file_val = f'{anno_root}/ava_val_v2.1.csv' # Path to the annotation file for␣
→˓validation

exclude_file_train = f'{anno_root}/ava_train_excluded_timestamps_v2.1.csv' # Path␣
→˓to the exclude annotation file for training
exclude_file_val = f'{anno_root}/ava_val_excluded_timestamps_v2.1.csv' # Path to␣
→˓the exclude annotation file for validation

label_file = f'{anno_root}/ava_action_list_v2.1_for_activitynet_2018.pbtxt' # Path␣
→˓to the label file

proposal_file_train = f'{anno_root}/ava_dense_proposals_train.FAIR.recall_93.9.pkl'␣
→˓ # Path to the human detection proposals for training examples
proposal_file_val = f'{anno_root}/ava_dense_proposals_val.FAIR.recall_93.9.pkl' #␣
→˓Path to the human detection proposals for validation examples

train_pipeline = [ # Training data processing pipeline
dict( # Config of SampleFrames

type='AVASampleFrames', # Sample frames pipeline, sampling frames from␣
→˓video

clip_len=4, # Frames of each sampled output clip
frame_interval=16), # Temporal interval of adjacent sampled frames

dict( # Config of RawFrameDecode
type='RawFrameDecode'), # Load and decode Frames pipeline, picking raw␣

→˓frames with given indices
dict( # Config of RandomRescale

type='RandomRescale', # Randomly rescale the shortedge by a given range
scale_range=(256, 320)), # The shortedge size range of RandomRescale

dict( # Config of RandomCrop
type='RandomCrop', # Randomly crop a patch with the given size

(continues on next page)
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size=256), # The size of the cropped patch
dict( # Config of Flip

type='Flip', # Flip Pipeline
flip_ratio=0.5), # Probability of implementing flip

dict( # Config of FormatShape
type='FormatShape', # Format shape pipeline, Format final image shape to␣

→˓the given input_format
input_format='NCTHW', # Final image shape format
collapse=True), # Collapse the dim N if N == 1

dict(type='PackActionInputs') # Pack input data
]

val_pipeline = [ # Validation data processing pipeline
dict( # Config of SampleFrames

type='AVASampleFrames', # Sample frames pipeline, sampling frames from␣
→˓video

clip_len=4, # Frames of each sampled output clip
frame_interval=16), # Temporal interval of adjacent sampled frames

dict( # Config of RawFrameDecode
type='RawFrameDecode'), # Load and decode Frames pipeline, picking raw␣

→˓frames with given indices
dict( # Config of Resize

type='Resize', # Resize pipeline
scale=(-1, 256)), # The scale to resize images

dict( # Config of FormatShape
type='FormatShape', # Format shape pipeline, Format final image shape to␣

→˓the given input_format
input_format='NCTHW', # Final image shape format
collapse=True), # Collapse the dim N if N == 1

dict(type='PackActionInputs') # Pack input data
]

train_dataloader = dict( # Config of train dataloader
batch_size=32, # Batch size of each single GPU during training
num_workers=8, # Workers to pre-fetch data for each single GPU during training
persistent_workers=True, # If `True`, the dataloader will not shut down the␣

→˓worker processes after an epoch end, which can accelerate training speed
sampler=dict(

type='DefaultSampler', # DefaultSampler which supports both distributed␣
→˓and non-distributed training. Refer to https://github.com/open-mmlab/mmengine/
→˓blob/main/mmengine/dataset/sampler.py

shuffle=True), # Randomly shuffle the training data in each epoch
dataset=dict( # Config of train dataset

type=dataset_type,
ann_file=ann_file_train, # Path of annotation file
exclude_file=exclude_file_train, # Path of exclude annotation file
label_file=label_file, # Path of label file
data_prefix=dict(img=data_root), # Prefix of frame path
proposal_file=proposal_file_train, # Path of human detection proposals
pipeline=train_pipeline))

val_dataloader = dict( # Config of validation dataloader
batch_size=1, # Batch size of each single GPU during evaluation

(continues on next page)
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num_workers=8, # Workers to pre-fetch data for each single GPU during␣
→˓evaluation

persistent_workers=True, # If `True`, the dataloader will not shut down the␣
→˓worker processes after an epoch end

sampler=dict(
type='DefaultSampler',
shuffle=False), # Not shuffle during validation and testing

dataset=dict( # Config of validation dataset
type=dataset_type,
ann_file=ann_file_val, # Path of annotation file
exclude_file=exclude_file_val, # Path of exclude annotation file
label_file=label_file, # Path of label file
data_prefix=dict(img=data_root_val), # Prefix of frame path
proposal_file=proposal_file_val, # Path of human detection proposals
pipeline=val_pipeline,
test_mode=True))

test_dataloader = val_dataloader # Config of testing dataloader

# evaluation settings
val_evaluator = dict( # Config of validation evaluator

type='AVAMetric',
ann_file=ann_file_val,
label_file=label_file,
exclude_file=exclude_file_val)

test_evaluator = val_evaluator # Config of testing evaluator

train_cfg = dict( # Config of training loop
type='EpochBasedTrainLoop', # Name of training loop
max_epochs=20, # Total training epochs
val_begin=1, # The epoch that begins validating
val_interval=1) # Validation interval

val_cfg = dict( # Config of validation loop
type='ValLoop') # Name of validation loop

test_cfg = dict( # Config of testing loop
type='TestLoop') # Name of testing loop

# learning policy
param_scheduler = [ # Parameter scheduler for updating optimizer parameters,␣
→˓support dict or list

dict(type='LinearLR', # Decays the learning rate of each parameter group by␣
→˓linearly changing small multiplicative factor

start_factor=0.1, # The number we multiply learning rate in the first epoch
by_epoch=True, # Whether the scheduled learning rate is updated by epochs

begin=0, # Step at which to start updating the learning rate
end=5), # Step at which to stop updating the learning rate

dict(type='MultiStepLR', # Decays the learning rate once the number of epoch␣
→˓reaches one of the milestones

begin=0, # Step at which to start updating the learning rate
end=20, # Step at which to stop updating the learning rate
by_epoch=True, # Whether the scheduled learning rate is updated by epochs
milestones=[10, 15], # Steps to decay the learning rate
gamma=0.1)] # Multiplicative factor of learning rate decay

(continues on next page)
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# optimizer
optim_wrapper = dict( # Config of optimizer wrapper

type='OptimWrapper', # Name of optimizer wrapper, switch to AmpOptimWrapper to␣
→˓enable mixed precision training

optimizer=dict( # Config of optimizer. Support all kinds of optimizers in␣
→˓PyTorch. Refer to https://pytorch.org/docs/stable/optim.html#algorithms

type='SGD', # Name of optimizer
lr=0.2, # Learning rate
momentum=0.9, # Momentum factor
weight_decay=0.0001), # Weight decay

clip_grad=dict(max_norm=40, norm_type=2)) # Config of gradient clip

# runtime settings
default_scope = 'mmaction' # The default registry scope to find modules. Refer to␣
→˓https://mmengine.readthedocs.io/en/latest/tutorials/registry.html
default_hooks = dict( # Hooks to execute default actions like updating model␣
→˓parameters and saving checkpoints.

runtime_info=dict(type='RuntimeInfoHook'), # The hook to updates runtime␣
→˓information into message hub

timer=dict(type='IterTimerHook'), # The logger used to record time spent␣
→˓during iteration

logger=dict(
type='LoggerHook', # The logger used to record logs during training/

→˓validation/testing phase
interval=20, # Interval to print the log
ignore_last=False), # Ignore the log of last iterations in each epoch

param_scheduler=dict(type='ParamSchedulerHook'), # The hook to update some␣
→˓hyper-parameters in optimizer

checkpoint=dict(
type='CheckpointHook', # The hook to save checkpoints periodically
interval=3, # The saving period
save_best='auto', # Specified metric to mearsure the best checkpoint␣

→˓during evaluation
max_keep_ckpts=3), # The maximum checkpoints to keep

sampler_seed=dict(type='DistSamplerSeedHook'), # Data-loading sampler for␣
→˓distributed training

sync_buffers=dict(type='SyncBuffersHook')) # Synchronize model buffers at the␣
→˓end of each epoch
env_cfg = dict( # Dict for setting environment

cudnn_benchmark=False, # Whether to enable cudnn benchmark
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), # Parameters to␣

→˓setup multiprocessing
dist_cfg=dict(backend='nccl')) # Parameters to setup distributed environment,␣

→˓the port can also be set

log_processor = dict(
type='LogProcessor', # Log processor used to format log information
window_size=20, # Default smooth interval
by_epoch=True) # Whether to format logs with epoch type

vis_backends = [ # List of visualization backends
dict(type='LocalVisBackend')] # Local visualization backend

(continues on next page)
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visualizer = dict( # Config of visualizer
type='ActionVisualizer', # Name of visualizer
vis_backends=vis_backends)

log_level = 'INFO' # The level of logging
load_from = ('https://download.openmmlab.com/mmaction/v1.0/recognition/slowonly/'

'slowonly_imagenet-pretrained-r50_8xb16-4x16x1-steplr-150e_kinetics400-
→˓rgb/'

'slowonly_imagenet-pretrained-r50_8xb16-4x16x1-steplr-150e_kinetics400-
→˓rgb_20220901-e7b65fad.pth') # Load model checkpoint as a pre-trained model from␣
→˓a given path. This will not resume training.
resume = False # Whether to resume from the checkpoint defined in `load_from`. If␣
→˓`load_from` is None, it will resume the latest checkpoint in the `work_dir`.

3.3.3 Config System for Action localization

We incorporate modular design into our config system, which is convenient to conduct various experiments.

• An Example of BMN

To help the users have a basic idea of a complete config structure and the modules in an action localization system,
we make brief comments on the config of BMN as the following. For more detailed usage and alternative for per
parameter in each module, please refer to the API documentation.

# model settings
model = dict( # Config of the model

type='BMN', # Class name of the localizer
temporal_dim=100, # Total frames selected for each video
boundary_ratio=0.5, # Ratio for determining video boundaries
num_samples=32, # Number of samples for each proposal
num_samples_per_bin=3, # Number of bin samples for each sample
feat_dim=400, # Dimension of feature
soft_nms_alpha=0.4, # Soft NMS alpha
soft_nms_low_threshold=0.5, # Soft NMS low threshold
soft_nms_high_threshold=0.9, # Soft NMS high threshold
post_process_top_k=100) # Top k proposals in post process

# dataset settings
dataset_type = 'ActivityNetDataset' # Type of dataset for training, validation and␣
→˓testing
data_root = 'data/activitynet_feature_cuhk/csv_mean_100/' # Root path to data for␣
→˓training
data_root_val = 'data/activitynet_feature_cuhk/csv_mean_100/' # Root path to data␣
→˓for validation and testing
ann_file_train = 'data/ActivityNet/anet_anno_train.json' # Path to the annotation␣
→˓file for training
ann_file_val = 'data/ActivityNet/anet_anno_val.json' # Path to the annotation file␣
→˓for validation
ann_file_test = 'data/ActivityNet/anet_anno_test.json' # Path to the annotation␣
→˓file for testing

train_pipeline = [ # Training data processing pipeline
dict(type='LoadLocalizationFeature'), # Load localization feature pipeline

(continues on next page)
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dict(type='GenerateLocalizationLabels'), # Generate localization labels␣
→˓pipeline

dict(
type='PackLocalizationInputs', # Pack localization data
keys=('gt_bbox'), # Keys of input
meta_keys=('video_name'))] # Meta keys of input

val_pipeline = [ # Validation data processing pipeline
dict(type='LoadLocalizationFeature'), # Load localization feature pipeline
dict(type='GenerateLocalizationLabels'), # Generate localization labels␣

→˓pipeline
dict(

type='PackLocalizationInputs', # Pack localization data
keys=('gt_bbox'), # Keys of input
meta_keys=('video_name', 'duration_second', 'duration_frame',

'annotations', 'feature_frame'))] # Meta keys of input
test_pipeline = [ # Testing data processing pipeline

dict(type='LoadLocalizationFeature'), # Load localization feature pipeline
dict(

type='PackLocalizationInputs', # Pack localization data
keys=('gt_bbox'), # Keys of input
meta_keys=('video_name', 'duration_second', 'duration_frame',

'annotations', 'feature_frame'))] # Meta keys of input
train_dataloader = dict( # Config of train dataloader

batch_size=8, # Batch size of each single GPU during training
num_workers=8, # Workers to pre-fetch data for each single GPU during training
persistent_workers=True, # If `True`, the dataloader will not shut down the␣

→˓worker processes after an epoch end, which can accelerate training speed
sampler=dict(

type='DefaultSampler', # DefaultSampler which supports both distributed␣
→˓and non-distributed training. Refer to https://github.com/open-mmlab/mmengine/
→˓blob/main/mmengine/dataset/sampler.py

shuffle=True), # Randomly shuffle the training data in each epoch
dataset=dict( # Config of train dataset

type=dataset_type,
ann_file=ann_file_train, # Path of annotation file
data_prefix=dict(video=data_root), # Prefix of video path
pipeline=train_pipeline))

val_dataloader = dict( # Config of validation dataloader
batch_size=1, # Batch size of each single GPU during evaluation
num_workers=8, # Workers to pre-fetch data for each single GPU during␣

→˓evaluation
persistent_workers=True, # If `True`, the dataloader will not shut down the␣

→˓worker processes after an epoch end
sampler=dict(

type='DefaultSampler',
shuffle=False), # Not shuffle during validation and testing

dataset=dict( # Config of validation dataset
type=dataset_type,
ann_file=ann_file_val, # Path of annotation file
data_prefix=dict(video=data_root_val), # Prefix of video path
pipeline=val_pipeline,
test_mode=True))

(continues on next page)
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test_dataloader = dict( # Config of test dataloader
batch_size=1, # Batch size of each single GPU during testing
num_workers=8, # Workers to pre-fetch data for each single GPU during testing
persistent_workers=True, # If `True`, the dataloader will not shut down the␣

→˓worker processes after an epoch end
sampler=dict(

type='DefaultSampler',
shuffle=False), # Not shuffle during validation and testing

dataset=dict( # Config of test dataset
type=dataset_type,
ann_file=ann_file_val, # Path of annotation file
data_prefix=dict(video=data_root_val), # Prefix of video path
pipeline=test_pipeline,
test_mode=True))

# evaluation settings
work_dir = './work_dirs/bmn_400x100_2x8_9e_activitynet_feature/' # Directory to␣
→˓save the model checkpoints and logs for the current experiments
val_evaluator = dict(
type='ANetMetric',
metric_type='AR@AN',
dump_config=dict( # Config of localization output

out=f'{work_dir}/results.json', # Path to the output file
output_format='json')) # File format of the output file

test_evaluator = val_evaluator # Set test_evaluator as val_evaluator

max_epochs = 9 # Total epochs to train the model
train_cfg = dict( # Config of training loop

type='EpochBasedTrainLoop', # Name of training loop
max_epochs=max_epochs, # Total training epochs
val_begin=1, # The epoch that begins validating
val_interval=1) # Validation interval

val_cfg = dict( # Config of validation loop
type='ValLoop') # Name of validating loop

test_cfg = dict( # Config of testing loop
type='TestLoop') # Name of testing loop

# learning policy
param_scheduler = [ # Parameter scheduler for updating optimizer parameters,␣
→˓support dict or list

dict(type='MultiStepLR', # Decays the learning rate once the number of epoch␣
→˓reaches one of the milestones

begin=0, # Step at which to start updating the learning rate
end=max_epochs, # Step at which to stop updating the learning rate
by_epoch=True, # Whether the scheduled learning rate is updated by epochs
milestones=[7, ], # Steps to decay the learning rate
gamma=0.1)] # Multiplicative factor of parameter value decay

# optimizer
optim_wrapper = dict( # Config of optimizer wrapper

type='OptimWrapper', # Name of optimizer wrapper, switch to AmpOptimWrapper to␣
→˓enable mixed precision training

(continues on next page)
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optimizer=dict( # Config of optimizer. Support all kinds of optimizers in␣
→˓PyTorch. Refer to https://pytorch.org/docs/stable/optim.html#algorithms

type='Adam', # Name of optimizer
lr=0.001, # Learning rate
weight_decay=0.0001), # Weight decay

clip_grad=dict(max_norm=40, norm_type=2)) # Config of gradient clip

# runtime settings
default_scope = 'mmaction' # The default registry scope to find modules. Refer to␣
→˓https://mmengine.readthedocs.io/en/latest/tutorials/registry.html
default_hooks = dict( # Hooks to execute default actions like updating model␣
→˓parameters and saving checkpoints.

runtime_info=dict(type='RuntimeInfoHook'), # The hook to updates runtime␣
→˓information into message hub

timer=dict(type='IterTimerHook'), # The logger used to record time spent␣
→˓during iteration

logger=dict(
type='LoggerHook', # The logger used to record logs during training/

→˓validation/testing phase
interval=20, # Interval to print the log
ignore_last=False), # Ignore the log of last iterations in each epoch

param_scheduler=dict(type='ParamSchedulerHook'), # The hook to update some␣
→˓hyper-parameters in optimizer

checkpoint=dict(
type='CheckpointHook', # The hook to save checkpoints periodically
interval=3, # The saving period
save_best='auto', # Specified metric to mearsure the best checkpoint␣

→˓during evaluation
max_keep_ckpts=3), # The maximum checkpoints to keep

sampler_seed=dict(type='DistSamplerSeedHook'), # Data-loading sampler for␣
→˓distributed training

sync_buffers=dict(type='SyncBuffersHook')) # Synchronize model buffers at the␣
→˓end of each epoch
env_cfg = dict( # Dict for setting environment

cudnn_benchmark=False, # Whether to enable cudnn benchmark
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), # Parameters to␣

→˓setup multiprocessing
dist_cfg=dict(backend='nccl')) # Parameters to setup distributed environment,␣

→˓the port can also be set

log_processor = dict(
type='LogProcessor', # Log processor used to format log information
window_size=20, # Default smooth interval
by_epoch=True) # Whether to format logs with epoch type

vis_backends = [ # List of visualization backends
dict(type='LocalVisBackend')] # Local visualization backend

visualizer = dict( # Config of visualizer
type='ActionVisualizer', # Name of visualizer
vis_backends=vis_backends)

log_level = 'INFO' # The level of logging
load_from = None # Load model checkpoint as a pre-trained model from a given path.␣
→˓This will not resume training.

(continues on next page)
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resume = False # Whether to resume from the checkpoint defined in `load_from`. If␣
→˓`load_from` is None, it will resume the latest checkpoint in the `work_dir`.
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CHAPTER

FOUR

TUTORIAL 2: PREPARE DATASETS

We provide some tips for MMAction2 data preparation in this file.

• Notes on Video Data Format

• Getting Data

– Prepare videos

– Extract frames

∗ Alternative to denseflow

– Generate file list

– Prepare audio

4.1 Notes on Video Data Format

MMAction2 supports two types of data format: raw frames and video. The former is widely used in previous projects
such as TSN. This is fast when SSD is available but fails to scale to the fast-growing datasets. (For example, the newest
edition of Kinetics has 650K videos and the total frames will take up several TBs.) The latter saves much space but has
to do the computation intensive video decoding at execution time. To make video decoding faster, we support several
efficient video loading libraries, such as decord, PyAV, etc.

4.2 Getting Data

The following guide is helpful when you want to experiment with custom dataset. Similar to the datasets stated above,
it is recommended organizing in $MMACTION2/data/$DATASET.

4.2.1 Prepare videos

Please refer to the official website and/or the official script to prepare the videos. Note that the videos should be arranged
in either

• A two-level directory organized by ${CLASS_NAME}/${VIDEO_ID}, which is recommended to be used for action
recognition datasets (such as UCF101 and Kinetics)

• A single-level directory, which is recommended to be used for action detection datasets or those with multiple
annotations per video (such as THUMOS14).
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4.2.2 Extract frames

To extract both frames and optical flow, you can use the tool denseflow we wrote. Since different frame extraction
tools produce different number of frames, it is beneficial to use the same tool to do both frame extraction and the flow
computation, to avoid mismatching of frame counts.

python build_rawframes.py ${SRC_FOLDER} ${OUT_FOLDER} [--task ${TASK}] [--level ${LEVEL}
→˓] \

[--num-worker ${NUM_WORKER}] [--flow-type ${FLOW_TYPE}] [--out-format ${OUT_FORMAT}]␣
→˓\

[--ext ${EXT}] [--new-width ${NEW_WIDTH}] [--new-height ${NEW_HEIGHT}] [--new-short $
→˓{NEW_SHORT}] \

[--resume] [--use-opencv] [--mixed-ext]

• SRC_FOLDER: Folder of the original video.

• OUT_FOLDER: Root folder where the extracted frames and optical flow store.

• TASK: Extraction task indicating which kind of frames to extract. Allowed choices are rgb, flow, both.

• LEVEL: Directory level. 1 for the single-level directory or 2 for the two-level directory.

• NUM_WORKER: Number of workers to build rawframes.

• FLOW_TYPE: Flow type to extract, e.g., None, tvl1, warp_tvl1, farn, brox.

• OUT_FORMAT: Output format for extracted frames, e.g., jpg, h5, png.

• EXT: Video file extension, e.g., avi, mp4.

• NEW_WIDTH: Resized image width of output.

• NEW_HEIGHT: Resized image height of output.

• NEW_SHORT: Resized image short side length keeping ratio.

• --resume: Whether to resume optical flow extraction instead of overwriting.

• --use-opencv: Whether to use OpenCV to extract rgb frames.

• --mixed-ext: Indicate whether process video files with mixed extensions.

The recommended practice is

1. set $OUT_FOLDER to be a folder located in SSD.

2. symlink the link $OUT_FOLDER to $MMACTION2/data/$DATASET/rawframes.

3. set new-short instead of using new-width and new-height.

ln -s ${YOUR_FOLDER} $MMACTION2/data/$DATASET/rawframes
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Alternative to denseflow

In case your device doesn’t fulfill the installation requirement of denseflow(like Nvidia driver version), or you just want
to see some quick demos about flow extraction, we provide a python script tools/misc/flow_extraction.py as
an alternative to denseflow. You can use it for rgb frames and optical flow extraction from one or several videos. Note
that the speed of the script is much slower than denseflow, since it runs optical flow algorithms on CPU.

python tools/misc/flow_extraction.py --input ${INPUT} [--prefix ${PREFIX}] [--dest $
→˓{DEST}] [--rgb-tmpl ${RGB_TMPL}] \

[--flow-tmpl ${FLOW_TMPL}] [--start-idx ${START_IDX}] [--method ${METHOD}] [--bound $
→˓{BOUND}] [--save-rgb]

• INPUT: Videos for frame extraction, can be single video or a video list, the video list should be a txt file and just
consists of filenames without directories.

• PREFIX: The prefix of input videos, used when input is a video list.

• DEST: The destination to save extracted frames.

• RGB_TMPL: The template filename of rgb frames.

• FLOW_TMPL: The template filename of flow frames.

• START_IDX: The start index of extracted frames.

• METHOD: The method used to generate flow.

• BOUND: The maximum of optical flow.

• SAVE_RGB: Also save extracted rgb frames.

4.2.3 Generate file list

We provide a convenient script to generate annotation file list. You can use the following command to generate file lists
given extracted frames / downloaded videos.

cd $MMACTION2
python tools/data/build_file_list.py ${DATASET} ${SRC_FOLDER} [--rgb-prefix ${RGB_PREFIX}
→˓] \

[--flow-x-prefix ${FLOW_X_PREFIX}] [--flow-y-prefix ${FLOW_Y_PREFIX}] [--num-split $
→˓{NUM_SPLIT}] \

[--subset ${SUBSET}] [--level ${LEVEL}] [--format ${FORMAT}] [--out-root-path ${OUT_
→˓ROOT_PATH}] \

[--seed ${SEED}] [--shuffle]

• DATASET: Dataset to be prepared, e.g., ucf101, kinetics400, thumos14, sthv1, sthv2, etc.

• SRC_FOLDER: Folder of the corresponding data format:

– “$MMACTION2/data/$DATASET/rawframes” if --format rawframes.

– “$MMACTION2/data/$DATASET/videos” if --format videos.

• RGB_PREFIX: Name prefix of rgb frames.

• FLOW_X_PREFIX: Name prefix of x flow frames.

• FLOW_Y_PREFIX: Name prefix of y flow frames.

• NUM_SPLIT: Number of split to file list.
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• SUBSET: Subset to generate file list. Allowed choice are train, val, test.

• LEVEL: Directory level. 1 for the single-level directory or 2 for the two-level directory.

• FORMAT: Source data format to generate file list. Allowed choices are rawframes, videos.

• OUT_ROOT_PATH: Root path for output

• SEED: Random seed.

• --shuffle: Whether to shuffle the file list.

4.2.4 Prepare audio

We also provide a simple script for audio waveform extraction and mel-spectrogram generation.

cd $MMACTION2
python tools/data/extract_audio.py ${ROOT} ${DST_ROOT} [--ext ${EXT}] [--num-workers ${N_
→˓WORKERS}] \

[--level ${LEVEL}]

• ROOT: The root directory of the videos.

• DST_ROOT: The destination root directory of the audios.

• EXT: Extension of the video files. e.g., mp4.

• N_WORKERS: Number of processes to be used.

After extracting audios, you are free to decode and generate the spectrogram on-the-fly such as this. As for the anno-
tations, you can directly use those of the rawframes as long as you keep the relative position of audio files same as the
rawframes directory. However, extracting spectrogram on-the-fly is slow and bad for prototype iteration. Therefore,
we also provide a script (and many useful tools to play with) for you to generation spectrogram off-line.

cd $MMACTION2
python tools/data/build_audio_features.py ${AUDIO_HOME_PATH} ${SPECTROGRAM_SAVE_PATH} [--
→˓level ${LEVEL}] \

[--ext $EXT] [--num-workers $N_WORKERS] [--part $PART]

• AUDIO_HOME_PATH: The root directory of the audio files.

• SPECTROGRAM_SAVE_PATH: The destination root directory of the audio features.

• EXT: Extension of the audio files. e.g., m4a.

• N_WORKERS: Number of processes to be used.

• PART: Determines how many parts to be splited and which part to run. e.g., 2/5 means splitting all files into
5-fold and executing the 2nd part. This is useful if you have several machines.

The annotations for audio spectrogram features are identical to those of rawframes. You can sim-
ply make a copy of dataset_[train/val]_list_rawframes.txt and rename it as dataset_[train/
val]_list_audio_feature.txt
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CHAPTER

FIVE

TUTORIAL 3: INFERENCE WITH EXISTING MODELS

MMAction2 provides pre-trained models for video understanding in Model Zoo. This note will show how to use
existing models to inference on given video.

As for how to test existing models on standard datasets, please see this guide

5.1 Inference on a given video

MMAction2 provides high-level Python APIs for inference on a given video:

• init_recognizer: Initialize a recognizer with a config and checkpoint

• inference_recognizer: Inference on a given video

Here is an example of building the model and inference on a given video by using Kinitics-400 pre-trained checkpoint.

Note: If you use mmaction2 as a 3rd-party package, you need to download the conifg and the demo video in the
example.

Run ‘mim download mmaction2 –config tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb –dest .’ to
download the required config.

Run ‘wget https://github.com/open-mmlab/mmaction2/blob/dev-1.x/demo/demo.mp4’ to download the desired demo
video.

from mmaction.apis import inference_recognizer, init_recognizer

config_path = 'configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_
→˓kinetics400-rgb.py'
checkpoint_path = 'https://download.openmmlab.com/mmaction/v1.0/recognition/tsn/tsn_
→˓imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb/tsn_imagenet-pretrained-r50_
→˓8xb32-1x1x8-100e_kinetics400-rgb_20220906-2692d16c.pth' # can be a local path
img_path = 'demo/demo.mp4' # you can specify your own picture path

# build the model from a config file and a checkpoint file
model = init_recognizer(config_path, checkpoint_path, device="cpu") # device can be
→˓'cuda:0'
# test a single image
result = inference_recognizer(model, img_path)

result is a dictionary containing pred_scores.

An action recognition demo can be found in demo/demo.py.
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CHAPTER

SIX

TUTORIAL 4: TRAINING AND TEST

6.1 Training

6.1.1 Training with your PC

You can use tools/train.py to train a model on a single machine with a CPU and optionally a GPU.

Here is the full usage of the script:

python tools/train.py ${CONFIG_FILE} [ARGS]

Note: By default, MMAction2 prefers GPU to CPU. If you want to train a model on CPU, please empty
CUDA_VISIBLE_DEVICES or set it to -1 to make GPU invisible to the program.

CUDA_VISIBLE_DEVICES=-1 python tools/train.py ${CONFIG_FILE} [ARGS]

6.1.2 Training with multiple GPUs

We provide a shell script to start a multi-GPUs task with torch.distributed.launch.

bash tools/dist_train.sh ${CONFIG} ${GPUS} [PY_ARGS]

You can also specify extra arguments of the launcher by environment variables. For example, change the communica-
tion port of the launcher to 29666 by the following command:

PORT=29666 bash tools/dist_train.sh ${CONFIG} ${GPUS} [PY_ARGS]

If you want to startup multiple training jobs and use different GPUs, you can launch them by specifying different port
and visible devices.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 bash tools/dist_train.sh ${CONFIG} 4 [PY_ARGS]
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 bash tools/dist_train.sh ${CONFIG} 4 [PY_ARGS]
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6.1.3 Training with multiple machines

Multiple machines in the same network

If you launch a training job with multiple machines connected with ethernet, you can run the following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR bash tools/dist_train.sh
→˓$CONFIG $GPUS

On the second machine:

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR bash tools/dist_train.sh
→˓$CONFIG $GPUS

The following extra environment variables need to be specified to train or test models with multiple machines:

Usually it is slow if you do not have high speed networking like InfiniBand.

Multiple machines managed with slurm

If you run MMAction2 on a cluster managed with slurm, you can use the script slurm_train.sh.

[ENV_VARS] bash tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG} [PY_ARGS]

Here are the arguments description of the script.

Here are the environment variables can be used to configure the slurm job.

6.2 Test

6.2.1 Test with your PC

You can use tools/test.py to test a model on a single machine with a CPU and optionally a GPU.

Here is the full usage of the script:

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [ARGS]

Note: By default, MMAction2 prefers GPU to CPU. If you want to test a model on CPU, please empty
CUDA_VISIBLE_DEVICES or set it to -1 to make GPU invisible to the program.

CUDA_VISIBLE_DEVICES=-1 python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [ARGS]
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6.2.2 Test with multiple GPUs

We provide a shell script to start a multi-GPUs task with torch.distributed.launch.

bash tools/dist_test.sh ${CONFIG} ${CHECKPOINT} ${GPUS} [PY_ARGS]

You can also specify extra arguments of the launcher by environment variables. For example, change the communica-
tion port of the launcher to 29666 by the following command:

PORT=29666 bash tools/dist_test.sh ${CONFIG} ${CHECKPOINT} ${GPUS} [PY_ARGS]

If you want to startup multiple test jobs and use different GPUs, you can launch them by specifying different port and
visible devices.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 bash tools/dist_test.sh ${CONFIG} ${CHECKPOINT}␣
→˓4 [PY_ARGS]
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 bash tools/dist_test.sh ${CONFIG} ${CHECKPOINT}␣
→˓4 [PY_ARGS]

6.2.3 Test with multiple machines

Multiple machines in the same network

If you launch a test job with multiple machines connected with ethernet, you can run the following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR bash tools/dist_test.sh
→˓$CONFIG $CHECKPOINT $GPUS

On the second machine:

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR bash tools/dist_test.sh
→˓$CONFIG $CHECKPOINT $GPUS

Compared with multi-GPUs in a single machine, you need to specify some extra environment variables:

Usually it is slow if you do not have high speed networking like InfiniBand.

Multiple machines managed with slurm

If you run MMAction2 on a cluster managed with slurm, you can use the script slurm_test.sh.

[ENV_VARS] bash tools/slurm_test.sh ${PARTITION} ${JOB_NAME} ${CONFIG} ${CHECKPOINT} [PY_
→˓ARGS]

Here are the arguments description of the script.

Here are the environment variables can be used to configure the slurm job.
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CHAPTER

SEVEN

OTHER USEFUL TOOLS

Apart from training/testing scripts, We provide lots of useful tools under the tools/ directory.

7.1 Useful Tools Link

• Other Useful Tools

– Useful Tools Link

– Model Conversion

∗ Prepare a model for publishing

– Miscellaneous

∗ Evaluating a metric

∗ Print the entire config

∗ Check videos

∗ Multi-Stream Fusion

7.2 Model Conversion

7.2.1 Prepare a model for publishing

tools/deployment/publish_model.py helps users to prepare their model for publishing.

Before you upload a model to AWS, you may want to:

(1) convert model weights to CPU tensors. (2) delete the optimizer states. (3) compute the hash of the checkpoint file
and append the hash id to the filename.

python tools/deployment/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}

E.g.,

python tools/deployment/publish_model.py work_dirs/tsn_r50_8xb32-1x1x3-100e_kinetics400-
→˓rgb/latest.pth tsn_r50_1x1x3_100e_kinetics400_rgb.pth

The final output filename will be tsn_r50_8xb32-1x1x3-100e_kinetics400-rgb-{hash id}.pth.
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7.3 Miscellaneous

7.3.1 Evaluating a metric

tools/analysis_tools/eval_metric.py evaluates certain metrics of the results saved in a file according to a
config file.

The saved result file is created on tools/test.py by setting the arguments --out ${RESULT_FILE} to indicate the
result file, which stores the final output of the whole model.

python tools/analysis/eval_metric.py ${CONFIG_FILE} ${RESULT_FILE} [--eval ${EVAL_
→˓METRICS}] [--cfg-options ${CFG_OPTIONS}] [--eval-options ${EVAL_OPTIONS}]

7.3.2 Print the entire config

tools/analysis_tools/print_config.py prints the whole config verbatim, expanding all its imports.

python tools/analysis_tools/print_config.py ${CONFIG} [-h] [--options ${OPTIONS [OPTIONS.
→˓..]}]

7.3.3 Check videos

tools/analysis_tools/check_videos.py uses specified video encoder to iterate all samples that are specified by
the input configuration file, looks for invalid videos (corrupted or missing), and saves the corresponding file path to the
output file. Please note that after deleting invalid videos, users need to regenerate the video file list.

python tools/analysis_tools/check_videos.py ${CONFIG} [-h] [--options OPTIONS [OPTIONS ..
→˓.]] [--cfg-options CFG_OPTIONS [CFG_OPTIONS ...]] [--output-file OUTPUT_FILE] [--split␣
→˓SPLIT] [--decoder DECODER] [--num-processes NUM_PROCESSES] [--remove-corrupted-videos]

7.3.4 Multi-Stream Fusion

tools/analysis_tools/report_accuracy.py uses the dumped results (by setting --dump res.pkl when test-
ing) to fuse the multi-stream prediction scores, i.e., late fusion.

python tools/analysis_tools/report_accuracy.py [--preds ${RESULT_PKL_1 [RESULT_PKL_2 ...
→˓]}] [--coefficients ${COEFFICIENT_1 [COEFFICIENT_2, ...]}] [--apply-softmax]

Take joint-bone fusion as an example, which is a general practice in the task of skeleton-based action recognition.

python tools/analysis_tools/report_accuracy.py --preds demo/fuse/joint.pkl demo/fuse/
→˓bone.pkl --coefficients 1.0 1.0

Note: Mean Class Accuracy: 0.9180 Top 1 Accuracy: 0.9333 Top 5 Accuracy: 0.9833
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CHAPTER

EIGHT

VISUALIZATION TOOLS

8.1 Visualize dataset

You can use tools/analysis_tools/browse_dataset.py to visualize video datasets:

python tools/analysis_tools/browse_dataset.py ${CONFIG_FILE} [ARGS]
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CHAPTER

NINE

MIGRATION FROM MMACTION2 0.X

MMAction2 1.x introduced major refactorings and modifications including some BC-breaking changes. We provide
this tutorial to help you migrate your projects from MMAction2 0.x smoothly.

9.1 New dependencies

MMAction2 1.x depends on the following packages. You are recommended to prepare a new clean environment and
install them according to install tutorial

1. MMEngine: MMEngine is a foundational library for training deep learning model introduced in OpenMMLab
2.0 architecture.

2. MMCV: MMCV is a foundational library for computer vision. MMAction2 1.x requires mmcv>=2.0.0rc0
which is more compact and efficient than mmcv-full==1.x.

9.2 Configuration files

In MMAction2 1.x, we refactored the structure of configuration files. The configuration files with the old style will be
incompatible.

In this section, we will introduce all changes of the configuration files. And we assume you are already familiar with
the config files.

9.2.1 Model settings

No changes in model.backbone and model.neck. For model.cls_head, we move the average_clips inside it,
which is originally set in model.test_cfg.

9.2.2 Data settings

Changes in data

• The original data field is splited to train_dataloader, val_dataloader and test_dataloader. This
allows us to configure them in fine-grained. For example, you can specify different sampler and batch size
during training and test.

• The videos_per_gpu is renamed to batch_size.

• The workers_per_gpu is renamed to num_workers.
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data = dict(
videos_per_gpu=32,
workers_per_gpu=2,
train=dict(...),
val=dict(...),
test=dict(...),

)

train_dataloader = dict(
batch_size=32,
num_workers=2,
dataset=dict(...),
sampler=dict(type='DefaultSampler', shuffle=True) # necessary

)

val_dataloader = dict(
batch_size=32,
num_workers=2,
dataset=dict(...),
sampler=dict(type='DefaultSampler', shuffle=False) # necessary

)

test_dataloader = val_dataloader

Changes in pipeline

• The original formatting transforms ToTensor, Collect are combined as PackActionInputs.

• We don’t recommend to do Normalize in the dataset pipeline. Please remove it from pipelines and set it in the
model.data_preprocessor field.

train_pipeline = [
dict(type='DecordInit'),
dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=8),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(

type='MultiScaleCrop',
input_size=224,
scales=(1, 0.875, 0.75, 0.66),
random_crop=False,
max_wh_scale_gap=1),

dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(type='Flip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs', 'label'])

]
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model.data_preprocessor = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=False)

train_pipeline = [
dict(type='DecordInit'),
dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=5),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(

type='MultiScaleCrop',
input_size=224,
scales=(1, 0.875, 0.75, 0.66),
random_crop=False,
max_wh_scale_gap=1),

dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(type='Flip', flip_ratio=0.5),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')

]

Changes in evaluation

• The evaluation field is splited to val_evaluator and test_evaluator. And it won’t support interval
and save_best arguments.

• The interval is moved to train_cfg.val_interval and the save_best is moved to default_hooks.
checkpoint.save_best.

• The ‘mean_average_precision’, ‘mean_class_accuracy’, ‘mmit_mean_average_precision’, ‘top_k_accuracy’ are
combined as AccMetric, and you could use metric_list to specify which metric to calculate.

• The AVAMetric is used to evaluate AVA Dataset.

• The ANetMetric is used to evaluate ActivityNet Dataset.

evaluation = dict(
interval=5,
metrics=['top_k_accuracy', 'mean_class_accuracy'])

val_evaluator = dict(
type='AccMetric',
metric_list=('top_k_accuracy', 'mean_class_accuracy'))

test_evaluator = val_evaluator
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9.2.3 Schedule settings

Changes in optimizer and optimizer_config

• Now we use optim_wrapper field to configure the optimization process. And the optimizer becomes a sub
field of optim_wrapper.

• paramwise_cfg is also a sub field of optim_wrapper parallel to optimizer.

• optimizer_config is removed now, and all configurations of it are moved to optim_wrapper.

• grad_clip is renamed to clip_grad.

optimizer = dict(
type='AdamW',
lr=0.0015,
weight_decay=0.3,
paramwise_cfg = dict(

norm_decay_mult=0.0,
bias_decay_mult=0.0,

))

optimizer_config = dict(grad_clip=dict(max_norm=1.0))

optim_wrapper = dict(
optimizer=dict(type='AdamW', lr=0.0015, weight_decay=0.3),
paramwise_cfg = dict(

norm_decay_mult=0.0,
bias_decay_mult=0.0,

),
clip_gard=dict(max_norm=1.0),

)

Changes in lr_config

• The lr_config field is removed and we use new param_scheduler to replace it.

• The warmup related arguments are removed, since we use schedulers combination to implement this functionality.

The new schedulers combination mechanism is very flexible, and you can use it to design many kinds of learning rate
/ momentum curves.

lr_config = dict(
policy='CosineAnnealing',
min_lr=0,
warmup='linear',
warmup_iters=5,
warmup_ratio=0.01,
warmup_by_epoch=True)

param_scheduler = [
# warmup
dict(

type='LinearLR',
(continues on next page)
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(continued from previous page)

start_factor=0.01,
by_epoch=True,
end=5,
# Update the learning rate after every iters.
convert_to_iter_based=True),

# main learning rate scheduler
dict(type='CosineAnnealingLR', by_epoch=True, begin=5),

]

Changes in runner

Most configuration in the original runner field is moved to train_cfg, val_cfg and test_cfg, which configure the
loop in training, validation and test.

runner = dict(type='EpochBasedRunner', max_epochs=100)

# The `val_interval` is the original `evaluation.interval`.
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=100, val_begin=1, val_interval=1)
val_cfg = dict(type='ValLoop') # Use the default validation loop.
test_cfg = dict(type='TestLoop') # Use the default test loop.

In fact, in OpenMMLab 2.0, we introduced Loop to control the behaviors in training, validation and test. And the
functionalities of Runner are also changed. You can find more details in the MMEngine tutorials.

9.2.4 Runtime settings

Changes in checkpoint_config and log_config

The checkpoint_config are moved to default_hooks.checkpoint and the log_config are moved to
default_hooks.logger. And we move many hooks settings from the script code to the default_hooks field in the
runtime configuration.

default_hooks = dict(
# update runtime information, e.g. current iter and lr.
runtime_info=dict(type='RuntimeInfoHook'),

# record the time of every iterations.
timer=dict(type='IterTimerHook'),

# print log every 100 iterations.
logger=dict(type='LoggerHook', interval=100),

# enable the parameter scheduler.
param_scheduler=dict(type='ParamSchedulerHook'),

# save checkpoint per epoch, and automatically save the best checkpoint.
checkpoint=dict(type='CheckpointHook', interval=1, save_best='auto'),

# set sampler seed in distributed environment.
sampler_seed=dict(type='DistSamplerSeedHook'),

(continues on next page)
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(continued from previous page)

# synchronize model buffers at the end of each epoch.
sync_buffers=dict(type='SyncBuffersHook')

)

In addition, we splited the original logger to logger and visualizer. The logger is used to record information and the
visualizer is used to show the logger in different backends, like terminal, TensorBoard and Wandb.

log_config = dict(
interval=100,
hooks=[

dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook'),

])

default_hooks = dict(
...
logger=dict(type='LoggerHook', interval=100),

)

visualizer = dict(
type='ActionVisualizer',
vis_backends=[dict(type='LocalVisBackend'), dict(type='TensorboardVisBackend')],

)

Changes in load_from and resume_from

• The resume_from is removed. And we use resume and load_from to replace it.

– If resume=True and load_from is not None, resume training from the checkpoint in load_from.

– If resume=True and load_from is None, try to resume from the latest checkpoint in the work directory.

– If resume=False and load_from is not None, only load the checkpoint, not resume training.

– If resume=False and load_from is None, do not load nor resume.

Changes in dist_params

The dist_params field is a sub field of env_cfg now. And there are some new configurations in the env_cfg.

env_cfg = dict(
# whether to enable cudnn benchmark
cudnn_benchmark=False,

# set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),

# set distributed parameters
dist_cfg=dict(backend='nccl'),

)
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Changes in workflow

Workflow related functionalities are removed.

New field visualizer

The visualizer is a new design in OpenMMLab 2.0 architecture. We use a visualizer instance in the runner to handle
results & log visualization and save to different backends.

visualizer = dict(
type='ActionVisualizer',
vis_backends=[

dict(type='LocalVisBackend'),
# Uncomment the below line to save the log and visualization results to␣

→˓TensorBoard.
# dict(type='TensorboardVisBackend')

]
)

New field default_scope

The start point to search module for all registries. The default_scope in MMAction2 is mmaction. See the registry
tutorial for more details.

9.3 Packages

9.3.1 mmaction.apis

The documentation can be found here.

9.3.2 mmaction.core

The mmaction.core package is renamed to mmaction.engine.

9.3.3 mmaction.datasets

The documentation can be found here

Changes in BaseActionDataset:

Now, you can write a new Dataset class inherited from BaseActionDataset and overwrite load_data_list only.
To load more data information, you could overwrite get_data_info like RawframeDataset and AVADataset.
The mmaction.datasets.pipelines is renamed to mmaction.datasets.transforms and the mmaction.
datasets.pipelines.augmentations is renamed to mmaction.datasets.pipelines.processing.
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9.3.4 mmaction.models

The documentation can be found here. The interface of all backbones, necks and losses didn’t change.

Changes in BaseRecognizer:

Changes in BaseHead:

9.3.5 mmaction.utils

9.3.6 Other changes

• We moved the definition of all registries in different packages to the mmaction.registry package.
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CHAPTER

TEN

OVERVIEW

• Number of checkpoints: 179

• Number of configs: 177

• Number of papers: 33

– ALGORITHM: 28

– BACKBONE: 1

– DATASET: 3

– OTHERS: 1

For supported datasets, see datasets overview.

10.1 Spatio Temporal Action Detection Models

• Number of checkpoints: 25

• Number of configs: 27

• Number of papers: 5

– [ALGORITHM] Ava: A Video Dataset of Spatio-Temporally Localized Atomic Visual Actions (-> -> ->)

– [ALGORITHM] Slowfast Networks for Video Recognition (->)

– [ALGORITHM] The Ava-Kinetics Localized Human Actions Video Dataset (->)

– [DATASET] Ava: A Video Dataset of Spatio-Temporally Localized Atomic Visual Actions (-> -> ->)

– [DATASET] The Ava-Kinetics Localized Human Actions Video Dataset (->)

10.2 Action Localization Models

• Number of checkpoints: 2

• Number of configs: 2

• Number of papers: 3

– [ALGORITHM] Bmn: Boundary-Matching Network for Temporal Action Proposal Generation (->)

– [ALGORITHM] Bsn: Boundary Sensitive Network for Temporal Action Proposal Generation (->)

– [DATASET] Cuhk & Ethz & Siat Submission to Activitynet Challenge 2017 (->)
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10.3 Action Recognition Models

• Number of checkpoints: 114

• Number of configs: 111

• Number of papers: 22

– [ALGORITHM] A Closer Look at Spatiotemporal Convolutions for Action Recognition (->)

– [ALGORITHM] Audiovisual Slowfast Networks for Video Recognition (->)

– [ALGORITHM] Is Space-Time Attention All You Need for Video Understanding? (->)

– [ALGORITHM] Learning Spatiotemporal Features With 3d Convolutional Networks (->)

– [ALGORITHM] Mvitv2: Improved Multiscale Vision Transformers for Classification and Detection (->)

– [ALGORITHM] Non-Local Neural Networks (-> -> ->)

– [ALGORITHM] Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset (->)

– [ALGORITHM] Slowfast Networks for Video Recognition (-> -> ->)

– [ALGORITHM] Tam: Temporal Adaptive Module for Video Recognition (->)

– [ALGORITHM] Temporal Interlacing Network (->)

– [ALGORITHM] Temporal Pyramid Network for Action Recognition (->)

– [ALGORITHM] Temporal Relational Reasoning in Videos (->)

– [ALGORITHM] Temporal Segment Networks: Towards Good Practices for Deep Action Recognition (->)

– [ALGORITHM] Tsm: Temporal Shift Module for Efficient Video Understanding (->)

– [ALGORITHM] Uniformer: Unified Transformer for Efficient Spatial-Temporal Representation Learning
(->)

– [ALGORITHM] Uniformerv2: Spatiotemporal Learning by Arming Image Vits With Video Uniformer
(->)

– [ALGORITHM] Video Classification With Channel-Separated Convolutional Networks (->)

– [ALGORITHM] Video Swin Transformer (->)

– [ALGORITHM] Video{mae (->)

– [ALGORITHM] X3d: Expanding Architectures for Efficient Video Recognition (->)

– [BACKBONE] Non-Local Neural Networks (-> -> ->)

– [OTHERS] Large-Scale Weakly-Supervised Pre-Training for Video Action Recognition (->)

10.4 Skeleton-based Action Recognition Models

• Number of checkpoints: 38

• Number of configs: 37

• Number of papers: 4

– [ALGORITHM] Pyskl: Towards Good Practices for Skeleton Action Recognition (->)

– [ALGORITHM] Revisiting Skeleton-Based Action Recognition (->)
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– [ALGORITHM] Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition
(->)

– [ALGORITHM] Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recog-
nition (->)
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CHAPTER

ELEVEN

ACTION RECOGNITION MODELS

11.1 C2D

Non-local Neural Networks

11.1.1 Abstract

Both convolutional and recurrent operations are building blocks that process one local neighborhood at a time. In this
paper, we present non-local operations as a generic family of building blocks for capturing long-range dependencies.
Inspired by the classical non-local means method in computer vision, our non-local operation computes the response at a
position as a weighted sum of the features at all positions. This building block can be plugged into many computer vision
architectures. On the task of video classification, even without any bells and whistles, our non-local models can compete
or outperform current competition winners on both Kinetics and Charades datasets. In static image recognition, our
non-local models improve object detection/segmentation and pose estimation on the COCO suite of tasks.

11.1.2 Results and Models

Kinetics-400

1. The values in columns named after “reference” are the results reported in the original repo, using the same model
settings.

2. The gpus indicates the number of gpus we used to get the checkpoint. If you want to use a different number of
gpus or videos per gpu, the best way is to set --auto-scale-lr when calling tools/train.py, this parameter
will auto-scale the learning rate according to the actual batch size and the original batch size.

3. The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at Kinetics400-
Validation. The corresponding data list (each line is of the format ‘video_id, num_frames, label_index’) and the
label map are also available.

For more details on data preparation, you can refer to Kinetics400.
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11.1.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train C2D model on Kinetics-400 dataset in a deterministic option with periodic validation.

python tools/train.py configs/recognition/c2d/c2d_r50-in1k-pre_8xb32-8x8x1-100e_
→˓kinetics400-rgb.py \

--seed 0 --deterministic

For more details, you can refer to the Training part in the Training and Test Tutorial.

11.1.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test C2D model on Kinetics-400 dataset and dump the result to a pkl file.

python tools/test.py configs/recognition/c2d/c2d_r50-in1k-pre_8xb32-8x8x1-100e_
→˓kinetics400-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.

11.1.5 Citation

@article{XiaolongWang2017NonlocalNN,
title={Non-local Neural Networks},
author={Xiaolong Wang and Ross Girshick and Abhinav Gupta and Kaiming He},
journal={arXiv: Computer Vision and Pattern Recognition},
year={2017}

}

11.2 C3D

Learning Spatiotemporal Features with 3D Convolutional Networks
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11.2.1 Abstract

We propose a simple, yet effective approach for spatiotemporal feature learning using deep 3-dimensional convolutional
networks (3D ConvNets) trained on a large scale supervised video dataset. Our findings are three-fold: 1) 3D ConvNets
are more suitable for spatiotemporal feature learning compared to 2D ConvNets; 2) A homogeneous architecture with
small 3x3x3 convolution kernels in all layers is among the best performing architectures for 3D ConvNets; and 3) Our
learned features, namely C3D (Convolutional 3D), with a simple linear classifier outperform state-of-the-art methods
on 4 different benchmarks and are comparable with current best methods on the other 2 benchmarks. In addition, the
features are compact: achieving 52.8% accuracy on UCF101 dataset with only 10 dimensions and also very efficient
to compute due to the fast inference of ConvNets. Finally, they are conceptually very simple and easy to train and use.

11.2.2 Results and Models

UCF-101

1. The author of C3D normalized UCF-101 with volume mean and used SVM to classify videos, while we normal-
ized the dataset with RGB mean value and used a linear classifier.

2. The gpus indicates the number of gpus we used to get the checkpoint. If you want to use a different number of
gpus or videos per gpu, the best way is to set --auto-scale-lr when calling tools/train.py, this parameter
will auto-scale the learning rate according to the actual batch size and the original batch size.

For more details on data preparation, you can refer to UCF101.

11.2.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train C3D model on UCF-101 dataset in a deterministic option with periodic validation.

python tools/train.py configs/recognition/c3d/c3d_sports1m-pretrained_8xb30-16x1x1-45e_
→˓ucf101-rgb.py \

--seed=0 --deterministic

For more details, you can refer to the Training part in the Training and Test Tutorial.

11.2.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test C3D model on UCF-101 dataset and dump the result to a pkl file.

python tools/test.py configs/recognition/c3d_sports1m-pretrained_8xb30-16x1x1-45e_ucf101-
→˓rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.
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11.2.5 Citation

@ARTICLE{2014arXiv1412.0767T,
author = {Tran, Du and Bourdev, Lubomir and Fergus, Rob and Torresani, Lorenzo and␣
→˓Paluri, Manohar},
title = {Learning Spatiotemporal Features with 3D Convolutional Networks},
keywords = {Computer Science - Computer Vision and Pattern Recognition},
year = 2014,
month = dec,
eid = {arXiv:1412.0767}
}

11.3 CSN

Video Classification With Channel-Separated Convolutional Networks

11.3.1 Abstract

Group convolution has been shown to offer great computational savings in various 2D convolutional architectures for
image classification. It is natural to ask: 1) if group convolution can help to alleviate the high computational cost
of video classification networks; 2) what factors matter the most in 3D group convolutional networks; and 3) what
are good computation/accuracy trade-offs with 3D group convolutional networks. This paper studies the effects of
different design choices in 3D group convolutional networks for video classification. We empirically demonstrate
that the amount of channel interactions plays an important role in the accuracy of 3D group convolutional networks.
Our experiments suggest two main findings. First, it is a good practice to factorize 3D convolutions by separating
channel interactions and spatiotemporal interactions as this leads to improved accuracy and lower computational cost.
Second, 3D channel-separated convolutions provide a form of regularization, yielding lower training accuracy but
higher test accuracy compared to 3D convolutions. These two empirical findings lead us to design an architecture –
Channel-Separated Convolutional Network (CSN) – which is simple, efficient, yet accurate. On Sports1M, Kinetics,
and Something-Something, our CSNs are comparable with or better than the state-of-the-art while being 2-3 times
more efficient.

11.3.2 Results and Models

Kinetics-400

1. The gpus indicates the number of gpus we used to get the checkpoint. If you want to use a different number of
gpus or videos per gpu, the best way is to set --auto-scale-lr when calling tools/train.py, this parameter
will auto-scale the learning rate according to the actual batch size and the original batch size.

2. The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at Kinetics400-
Validation. The corresponding data list (each line is of the format ‘video_id, num_frames, label_index’) and the
label map are also available.

3. The infer_ckpt means those checkpoints are ported from VMZ.

For more details on data preparation, you can refer to Kinetics400.
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11.3.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train CSN model on Kinetics-400 dataset in a deterministic option with periodic validation.

python tools/train.py configs/recognition/csn/ircsn_ig65m-pretrained-r152_8xb12-32x2x1-
→˓58e_kinetics400-rgb.py \

--seed=0 --deterministic

For more details, you can refer to the Training part in the Training and Test Tutorial.

11.3.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test CSN model on Kinetics-400 dataset and dump the result to a pkl file.

python tools/test.py configs/recognition/csn/ircsn_ig65m-pretrained-r152_8xb12-32x2x1-
→˓58e_kinetics400-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.

11.3.5 Citation

@inproceedings{inproceedings,
author = {Wang, Heng and Feiszli, Matt and Torresani, Lorenzo},
year = {2019},
month = {10},
pages = {5551-5560},
title = {Video Classification With Channel-Separated Convolutional Networks},
doi = {10.1109/ICCV.2019.00565}
}

@inproceedings{ghadiyaram2019large,
title={Large-scale weakly-supervised pre-training for video action recognition},
author={Ghadiyaram, Deepti and Tran, Du and Mahajan, Dhruv},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern␣

→˓Recognition},
pages={12046--12055},
year={2019}

}
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11.4 I3D

Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset

Non-local Neural Networks

11.4.1 Abstract

The paucity of videos in current action classification datasets (UCF-101 and HMDB-51) has made it difficult to identify
good video architectures, as most methods obtain similar performance on existing small-scale benchmarks. This paper
re-evaluates state-of-the-art architectures in light of the new Kinetics Human Action Video dataset. Kinetics has two
orders of magnitude more data, with 400 human action classes and over 400 clips per class, and is collected from
realistic, challenging YouTube videos. We provide an analysis on how current architectures fare on the task of action
classification on this dataset and how much performance improves on the smaller benchmark datasets after pre-training
on Kinetics. We also introduce a new Two-Stream Inflated 3D ConvNet (I3D) that is based on 2D ConvNet inflation:
filters and pooling kernels of very deep image classification ConvNets are expanded into 3D, making it possible to learn
seamless spatio-temporal feature extractors from video while leveraging successful ImageNet architecture designs and
even their parameters. We show that, after pre-training on Kinetics, I3D models considerably improve upon the state-
of-the-art in action classification, reaching 80.9% on HMDB-51 and 98.0% on UCF-101.

11.4.2 Results and Models

Kinetics-400

1. The gpus indicates the number of gpus we used to get the checkpoint. If you want to use a different number of
gpus or videos per gpu, the best way is to set --auto-scale-lr when calling tools/train.py, this parameter
will auto-scale the learning rate according to the actual batch size and the original batch size.

2. The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at Kinetics400-
Validation. The corresponding data list (each line is of the format ‘video_id, num_frames, label_index’) and the
label map are also available.

For more details on data preparation, you can refer to Kinetics400.

11.4.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train I3D model on Kinetics-400 dataset in a deterministic option with periodic validation.

python tools/train.py configs/recognition/i3d/i3d_imagenet-pretrained-r50_8xb8-32x2x1-
→˓100e_kinetics400-rgb.py \

--seed=0 --deterministic

For more details, you can refer to the Training part in the Training and Test Tutorial.
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11.4.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test I3D model on Kinetics-400 dataset and dump the result to a pkl file.

python tools/test.py configs/recognition/i3d/i3d_imagenet-pretrained-r50_8xb8-32x2x1-
→˓100e_kinetics400-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.

11.4.5 Citation

@inproceedings{inproceedings,
author = {Carreira, J. and Zisserman, Andrew},
year = {2017},
month = {07},
pages = {4724-4733},
title = {Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset},
doi = {10.1109/CVPR.2017.502}

}

@article{NonLocal2018,
author = {Xiaolong Wang and Ross Girshick and Abhinav Gupta and Kaiming He},
title = {Non-local Neural Networks},
journal = {CVPR},
year = {2018}

}

11.5 MViT V2

MViTv2: Improved Multiscale Vision Transformers for Classification and Detection

11.5.1 Abstract

In this paper, we study Multiscale Vision Transformers (MViTv2) as a unified architecture for image and video classi-
fication, as well as object detection. We present an improved version of MViT that incorporates decomposed relative
positional embeddings and residual pooling connections. We instantiate this architecture in five sizes and evaluate
it for ImageNet classification, COCO detection and Kinetics video recognition where it outperforms prior work. We
further compare MViTv2s’ pooling attention to window attention mechanisms where it outperforms the latter in accu-
racy/compute. Without bells-and-whistles, MViTv2 has state-of-the-art performance in 3 domains: 88.8% accuracy on
ImageNet classification, 58.7 boxAP on COCO object detection as well as 86.1% on Kinetics-400 video classification.
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11.5.2 Results and Models

1. Models with * in Inference results are ported from the repo SlowFast and tested on our data, and models
in Training results are trained in MMAction2 on our data.

2. The values in columns named after reference are copied from paper, and reference* are results using Slow-
Fast repo and trained on our data.

3. The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at Kinetics400-
Validation. The corresponding data list (each line is of the format ‘video_id, num_frames, label_index’) and the
label map are also available.

4. MaskFeat fine-tuning experiment is based on pretrain model from MMSelfSup, and the corresponding reference
result is based on pretrain model from SlowFast.

5. Due to the different versions of Kinetics-400, our training results are different from paper.

6. Due to the training efficiency, we currently only provide MViT-small training results, we don’t ensure other config
files’ training accuracy and welcome you to contribute your reproduction results.

7. We use repeat augment in MViT training configs following SlowFast. Repeat augment takes multiple times
of data augment for one video, this way can improve the generalization of the model and relieve the IO stress
of loading videos. And please note that the actual batch size is num_repeats times of batch_size in
train_dataloader.

Inference results

Kinetics-400

Something-Something V2

Training results

Kinetics-400

the corresponding result without repeat augment is as follows:

Something-Something V2

For more details on data preparation, you can refer to

• Kinetics

• Something-something V2
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11.5.3 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test MViT model on Kinetics-400 dataset and dump the result to a pkl file.

python tools/test.py configs/recognition/mvit/mvit-small-p244_16x4x1_kinetics400-rgb.py \
checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.

11.5.4 Citation

@inproceedings{li2021improved,
title={MViTv2: Improved multiscale vision transformers for classification and␣

→˓detection},
author={Li, Yanghao and Wu, Chao-Yuan and Fan, Haoqi and Mangalam, Karttikeya and␣

→˓Xiong, Bo and Malik, Jitendra and Feichtenhofer, Christoph},
booktitle={CVPR},
year={2022}

}

11.6 Omnisource

11.6.1 Abstract

We propose to train a recognizer that can classify images and videos. The recognizer is jointly trained on image and
video datasets. Compared with pre-training on the same image dataset, this method can significantly improve the video
recognition performance.

11.6.2 Results and Models

Kinetics-400

1. The gpus indicates the number of gpus we used to get the checkpoint. If you want to use a different number of
gpus or videos per gpu, the best way is to set --auto-scale-lr when calling tools/train.py, this parameter
will auto-scale the learning rate according to the actual batch size and the original batch size.

2. The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at Kinetics400-
Validation. The corresponding data list (each line is of the format ‘video_id, num_frames, label_index’) and the
label map are also available.

For more details on data preparation, you can refer to Kinetics400.
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11.6.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train SlowOnly model on Kinetics-400 dataset in a deterministic option with periodic validation.

python tools/train.py configs/recognition/omnisource/slowonly_r50_8xb16-8x8x1-256e_
→˓imagenet-kinetics400-rgb.py \

--seed=0 --deterministic

We found that the training of this Omnisource model could crash for unknown reasons. If this happens, you can resume
training by adding the --cfg-options resume=True to the training script.

For more details, you can refer to the Training part in the Training and Test Tutorial.

11.6.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test SlowOnly model on Kinetics-400 dataset and dump the result to a pkl file.

python tools/test.py configs/recognition/omnisource/slowonly_r50_8xb16-8x8x1-256e_
→˓imagenet-kinetics400-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.

11.6.5 Citation

@inproceedings{feichtenhofer2019slowfast,
title={Slowfast networks for video recognition},
author={Feichtenhofer, Christoph and Fan, Haoqi and Malik, Jitendra and He, Kaiming},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={6202--6211},
year={2019}

}

11.7 R2plus1D

A closer look at spatiotemporal convolutions for action recognition
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11.7.1 Abstract

In this paper we discuss several forms of spatiotemporal convolutions for video analysis and study their effects on action
recognition. Our motivation stems from the observation that 2D CNNs applied to individual frames of the video have
remained solid performers in action recognition. In this work we empirically demonstrate the accuracy advantages of
3D CNNs over 2D CNNs within the framework of residual learning. Furthermore, we show that factorizing the 3D
convolutional filters into separate spatial and temporal components yields significantly advantages in accuracy. Our
empirical study leads to the design of a new spatiotemporal convolutional block “R(2+1)D” which gives rise to CNNs
that achieve results comparable or superior to the state-of-the-art on Sports-1M, Kinetics, UCF101 and HMDB51.

11.7.2 Results and Models

Kinetics-400

1. The gpus indicates the number of gpus we used to get the checkpoint. If you want to use a different number of
gpus or videos per gpu, the best way is to set --auto-scale-lr when calling tools/train.py, this parameter
will auto-scale the learning rate according to the actual batch size and the original batch size.

2. The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at Kinetics400-
Validation. The corresponding data list (each line is of the format ‘video_id, num_frames, label_index’) and the
label map are also available.

For more details on data preparation, you can refer to Kinetics400.

11.7.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train R(2+1)D model on Kinetics-400 dataset in a deterministic option.

python tools/train.py configs/recognition/r2plus1d/r2plus1d_r34_8xb8-8x8x1-180e_
→˓kinetics400-rgb.py \

--seed=0 --deterministic

For more details, you can refer to the Training part in the Training and Test Tutorial.

11.7.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test R(2+1)D model on Kinetics-400 dataset and dump the result to a pkl file.

python tools/test.py configs/recognition/r2plus1d/r2plus1d_r34_8xb8-8x8x1-180e_
→˓kinetics400-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.
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11.8 SlowFast

SlowFast Networks for Video Recognition

11.8.1 Abstract

We present SlowFast networks for video recognition. Our model involves (i) a Slow pathway, operating at low frame
rate, to capture spatial semantics, and (ii) a Fast pathway, operating at high frame rate, to capture motion at fine temporal
resolution. The Fast pathway can be made very lightweight by reducing its channel capacity, yet can learn useful
temporal information for video recognition. Our models achieve strong performance for both action classification
and detection in video, and large improvements are pin-pointed as contributions by our SlowFast concept. We report
state-of-the-art accuracy on major video recognition benchmarks, Kinetics, Charades and AVA.

11.8.2 Results and Models

Kinetics-400

1. The gpus indicates the number of gpus we used to get the checkpoint. If you want to use a different number of
gpus or videos per gpu, the best way is to set --auto-scale-lr when calling tools/train.py, this parameter
will auto-scale the learning rate according to the actual batch size and the original batch size.

2. The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at Kinetics400-
Validation. The corresponding data list (each line is of the format ‘video_id, num_frames, label_index’) and the
label map are also available.

For more details on data preparation, you can refer to Kinetics400.

11.8.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train SlowFast model on Kinetics-400 dataset in a deterministic option with periodic validation.

python tools/train.py configs/recognition/slowfast/slowfast_r50_8xb8-4x16x1-256e_
→˓kinetics400-rgb.py \

--seed=0 --deterministic
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For more details, you can refer to the Training part in the Training and Test Tutorial.

11.8.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test SlowFast model on Kinetics-400 dataset and dump the result to a pkl file.

python tools/test.py configs/recognition/slowfast/slowfast_r50_8xb8-4x16x1-256e_
→˓kinetics400-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.

11.8.5 Citation

@inproceedings{feichtenhofer2019slowfast,
title={Slowfast networks for video recognition},
author={Feichtenhofer, Christoph and Fan, Haoqi and Malik, Jitendra and He, Kaiming},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={6202--6211},
year={2019}

}

11.9 SlowOnly

Slowfast networks for video recognition

11.9.1 Abstract

We present SlowFast networks for video recognition. Our model involves (i) a Slow pathway, operating at low frame
rate, to capture spatial semantics, and (ii) a Fast pathway, operating at high frame rate, to capture motion at fine temporal
resolution. The Fast pathway can be made very lightweight by reducing its channel capacity, yet can learn useful
temporal information for video recognition. Our models achieve strong performance for both action classification
and detection in video, and large improvements are pin-pointed as contributions by our SlowFast concept. We report
state-of-the-art accuracy on major video recognition benchmarks, Kinetics, Charades and AVA.

11.9.2 Results and Models

Kinetics-400

Kinetics-700

1. The gpus indicates the number of gpus we used to get the checkpoint. If you want to use a different number of
gpus or videos per gpu, the best way is to set --auto-scale-lr when calling tools/train.py, this parameter
will auto-scale the learning rate according to the actual batch size and the original batch size.
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2. The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at Kinetics400-
Validation. The corresponding data list (each line is of the format ‘video_id, num_frames, label_index’) and the
label map are also available.

For more details on data preparation, you can refer to Kinetics400.

11.9.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train SlowOnly model on Kinetics-400 dataset in a deterministic option with periodic validation.

python tools/train.py configs/recognition/slowonly/slowonly_r50_8xb16-4x16x1-256e_
→˓kinetics400-rgb.py \

--seed=0 --deterministic

For more details, you can refer to the Training part in the Training and Test Tutorial.

11.9.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test SlowOnly model on Kinetics-400 dataset and dump the result to a pkl file.

python tools/test.py configs/recognition/slowonly/slowonly_r50_8xb16-4x16x1-256e_
→˓kinetics400-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.

11.9.5 Citation

@inproceedings{feichtenhofer2019slowfast,
title={Slowfast networks for video recognition},
author={Feichtenhofer, Christoph and Fan, Haoqi and Malik, Jitendra and He, Kaiming},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={6202--6211},
year={2019}

}
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11.10 VideoSwin

Video Swin Transformer

11.10.1 Abstract

The vision community is witnessing a modeling shift from CNNs to Transformers, where pure Transformer archi-
tectures have attained top accuracy on the major video recognition benchmarks. These video models are all built on
Transformer layers that globally connect patches across the spatial and temporal dimensions. In this paper, we instead
advocate an inductive bias of locality in video Transformers, which leads to a better speed-accuracy trade-off compared
to previous approaches which compute self-attention globally even with spatial-temporal factorization. The locality of
the proposed video architecture is realized by adapting the Swin Transformer designed for the image domain, while
continuing to leverage the power of pre-trained image models. Our approach achieves state-of-the-art accuracy on a
broad range of video recognition benchmarks, including on action recognition (84.9 top-1 accuracy on Kinetics-400
and 85.9 top-1 accuracy on Kinetics-600 with ~20xless pre-training data and ~3xsmaller model size) and temporal
modeling (69.6 top-1 accuracy on Something-Something v2).

11.10.2 Results and Models

Kinetics-400

Kinetics-700

1. The gpus indicates the number of gpus we used to get the checkpoint. If you want to use a different number of
gpus or videos per gpu, the best way is to set --auto-scale-lr when calling tools/train.py, this parameter
will auto-scale the learning rate according to the actual batch size and the original batch size.

2. The values in columns named after “reference” are the results got by testing on our dataset, using the checkpoints
provided by the author with same model settings. * means that the numbers are copied from the paper.

3. The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at Kinetics400-
Validation. The corresponding data list (each line is of the format ‘video_id, num_frames, label_index’) and the
label map are also available.

4. Pre-trained image models can be downloaded from Swin Transformer for ImageNet Classification.

For more details on data preparation, you can refer to Kinetics.

11.10.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train VideoSwin model on Kinetics-400 dataset in a deterministic option with periodic validation.

python tools/train.py configs/recognition/swin/swin-tiny-p244-w877_in1k-pre_8xb8-amp-
→˓32x2x1-30e_kinetics400-rgb.py \

--seed=0 --deterministic

For more details, you can refer to the Training part in the Training and Test Tutorial.
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11.10.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test VideoSwin model on Kinetics-400 dataset and dump the result to a pkl file.

python tools/test.py configs/recognition/swin/swin-tiny-p244-w877_in1k-pre_8xb8-amp-
→˓32x2x1-30e_kinetics400-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.

11.10.5 Citation
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11.11 TANet

TAM: Temporal Adaptive Module for Video Recognition

11.11.1 Abstract

Video data is with complex temporal dynamics due to various factors such as camera motion, speed variation, and
different activities. To effectively capture this diverse motion pattern, this paper presents a new temporal adaptive
module ({\bf TAM}) to generate video-specific temporal kernels based on its own feature map. TAM proposes a unique
two-level adaptive modeling scheme by decoupling the dynamic kernel into a location sensitive importance map and
a location invariant aggregation weight. The importance map is learned in a local temporal window to capture short-
term information, while the aggregation weight is generated from a global view with a focus on long-term structure.
TAM is a modular block and could be integrated into 2D CNNs to yield a powerful video architecture (TANet) with
a very small extra computational cost. The extensive experiments on Kinetics-400 and Something-Something datasets
demonstrate that our TAM outperforms other temporal modeling methods consistently, and achieves the state-of-the-art
performance under the similar complexity.
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11.11.2 Results and Models

Kinetics-400

Something-Something V1

1. The gpus indicates the number of gpus we used to get the checkpoint. If you want to use a different number of
gpus or videos per gpu, the best way is to set --auto-scale-lr when calling tools/train.py, this parameter
will auto-scale the learning rate according to the actual batch size and the original batch size.

2. The values in columns named after “reference” are the results got by testing on our dataset, using the checkpoints
provided by the author with same model settings. The checkpoints for reference repo can be downloaded here.

3. The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at Kinetics400-
Validation. The corresponding data list (each line is of the format ‘video_id, num_frames, label_index’) and the
label map are also available.

For more details on data preparation, you can refer to

• Kinetics400

• Something-something V1

11.11.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train TANet model on Kinetics-400 dataset in a deterministic option with periodic validation.

python tools/train.py configs/recognition/tanet/tanet_imagenet-pretrained-r50_8xb8-dense-
→˓1x1x8-100e_kinetics400-rgb.py \

--seed=0 --deterministic

For more details, you can refer to the Training part in the Training and Test Tutorial.

11.11.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test TANet model on Kinetics-400 dataset and dump the result to a pkl file.

python tools/test.py configs/recognition/tanet/tanet_imagenet-pretrained-r50_8xb8-dense-
→˓1x1x8-100e_kinetics400-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.
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11.12 TimeSformer

Is Space-Time Attention All You Need for Video Understanding?

11.12.1 Abstract

We present a convolution-free approach to video classification built exclusively on self-attention over space and time.
Our method, named “TimeSformer,” adapts the standard Transformer architecture to video by enabling spatiotemporal
feature learning directly from a sequence of frame-level patches. Our experimental study compares different self-
attention schemes and suggests that “divided attention,” where temporal attention and spatial attention are separately
applied within each block, leads to the best video classification accuracy among the design choices considered. Despite
the radically new design, TimeSformer achieves state-of-the-art results on several action recognition benchmarks, in-
cluding the best reported accuracy on Kinetics-400 and Kinetics-600. Finally, compared to 3D convolutional networks,
our model is faster to train, it can achieve dramatically higher test efficiency (at a small drop in accuracy), and it can
also be applied to much longer video clips (over one minute long).

11.12.2 Results and Models

Kinetics-400

1. The gpus indicates the number of gpus we used to get the checkpoint. If you want to use a different number of
gpus or videos per gpu, the best way is to set --auto-scale-lr when calling tools/train.py, this parameter
will auto-scale the learning rate according to the actual batch size and the original batch size.

2. We keep the test setting with the original repo (three crop x 1 clip).

3. The pretrained model vit_base_patch16_224.pth used by TimeSformer was converted from vi-
sion_transformer.

For more details on data preparation, you can refer to Kinetics400.

11.12.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train TimeSformer model on Kinetics-400 dataset in a deterministic option with periodic validation.
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python tools/train.py configs/recognition/timesformer/timesformer_divST_8xb8-8x32x1-15e_
→˓kinetics400-rgb.py \

--seed=0 --deterministic

For more details, you can refer to the Training part in the Training and Test Tutorial.

11.12.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test TimeSformer model on Kinetics-400 dataset and dump the result to a pkl file.

python tools/test.py configs/recognition/timesformer/timesformer_divST_8xb8-8x32x1-15e_
→˓kinetics400-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.
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11.13 TIN

Temporal Interlacing Network

11.13.1 Abstract

For a long time, the vision community tries to learn the spatio-temporal representation by combining convolutional
neural network together with various temporal models, such as the families of Markov chain, optical flow, RNN and
temporal convolution. However, these pipelines consume enormous computing resources due to the alternately learning
process for spatial and temporal information. One natural question is whether we can embed the temporal information
into the spatial one so the information in the two domains can be jointly learned once-only. In this work, we answer
this question by presenting a simple yet powerful operator – temporal interlacing network (TIN). Instead of learning
the temporal features, TIN fuses the two kinds of information by interlacing spatial representations from the past to
the future, and vice versa. A differentiable interlacing target can be learned to control the interlacing process. In this
way, a heavy temporal model is replaced by a simple interlacing operator. We theoretically prove that with a learnable
interlacing target, TIN performs equivalently to the regularized temporal convolution network (r-TCN), but gains 4%
more accuracy with 6x less latency on 6 challenging benchmarks. These results push the state-of-the-art performances
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of video understanding by a considerable margin. Not surprising, the ensemble model of the proposed TIN won the
1st place in the ICCV19 - Multi Moments in Time challenge.

11.13.2 Results and Models

Something-Something V1

Something-Something V2

Kinetics-400

Here, we use finetune to indicate that we use TSM model trained on Kinetics-400 to finetune the TIN model on
Kinetics-400.

Note:

1. The reference topk acc are got by training the original repo ##1aacd0c with no AverageMeter issue. The Aver-
ageMeter issue will lead to incorrect performance, so we fix it before running.

2. The gpus indicates the number of gpu we used to get the checkpoint. It is noteworthy that the configs we provide
are used for 8 gpus as default. According to the Linear Scaling Rule, you may set the learning rate proportional
to the batch size if you use different GPUs or videos per GPU, e.g., lr=0.01 for 4 GPUs x 2 video/gpu and lr=0.08
for 16 GPUs x 4 video/gpu.

3. The values in columns named after “reference” are the results got by training on the original repo, using the same
model settings.

4. The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at Kinetics400-
Validation. The corresponding data list (each line is of the format ‘video_id, num_frames, label_index’) and the
label map are also available.

For more details on data preparation, you can refer to Kinetics400, Something-Something V1 and Something-
Something V2 in Prepare Datasets.

11.13.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train TIN model on Something-Something V1 dataset in a deterministic option with periodic validation.

python tools/train.py configs/recognition/tin/tin_imagenet-pretrained-r50_8xb6-1x1x8-40e_
→˓sthv1-rgb.py \

--work-dir work_dirs/tin_imagenet-pretrained-r50_8xb6-1x1x8-40e_sthv1-rgb randomness.
→˓seed=0 randomness.deterministic=True

For more details, you can refer to the Training part in the Training and Test Tutorial.
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11.13.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test TIN model on Something-Something V1 dataset and dump the result to a json file.

python tools/test.py configs/recognition/tin/tin_imagenet-pretrained-r50_8xb6-1x1x8-40e_
→˓sthv1-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.json

For more details, you can refer to the Test part in the Training and Test Tutorial.

11.13.5 Citation

@article{shao2020temporal,
title={Temporal Interlacing Network},
author={Hao Shao and Shengju Qian and Yu Liu},
year={2020},
journal={AAAI},

}

11.14 TPN

Temporal Pyramid Network for Action Recognition

11.14.1 Abstract

Visual tempo characterizes the dynamics and the temporal scale of an action. Modeling such visual tempos of different
actions facilitates their recognition. Previous works often capture the visual tempo through sampling raw videos at
multiple rates and constructing an input-level frame pyramid, which usually requires a costly multi-branch network
to handle. In this work we propose a generic Temporal Pyramid Network (TPN) at the feature-level, which can be
flexibly integrated into 2D or 3D backbone networks in a plug-and-play manner. Two essential components of TPN,
the source of features and the fusion of features, form a feature hierarchy for the backbone so that it can capture action
instances at various tempos. TPN also shows consistent improvements over other challenging baselines on several
action recognition datasets. Specifically, when equipped with TPN, the 3D ResNet-50 with dense sampling obtains a
2% gain on the validation set of Kinetics-400. A further analysis also reveals that TPN gains most of its improvements
on action classes that have large variances in their visual tempos, validating the effectiveness of TPN.
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11.14.2 Results and Models

Kinetics-400

Something-Something V1

Note:

1. The gpus indicates the number of gpu we used to get the checkpoint. It is noteworthy that the configs we provide
are used for 8 gpus as default. According to the Linear Scaling Rule, you may set the learning rate proportional
to the batch size if you use different GPUs or videos per GPU, e.g., lr=0.01 for 4 GPUs x 2 video/gpu and lr=0.08
for 16 GPUs x 4 video/gpu.

2. The values in columns named after “reference” are the results got by testing the checkpoint released on the
original repo and codes, using the same dataset with ours.

3. The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at Kinetics400-
Validation. The corresponding data list (each line is of the format ‘video_id, num_frames, label_index’) and the
label map are also available.

For more details on data preparation, you can refer to Kinetics400, Something-Something V1 and Something-
Something V2 in Data Preparation.

11.14.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train TPN model on Kinetics-400 dataset in a deterministic option with periodic validation.

python tools/train.py configs/recognition/tpn/tpn-slowonly_r50_8xb8-8x8x1-150e_
→˓kinetics400-rgb.py \

--work-dir work_dirs/tpn-slowonly_r50_8xb8-8x8x1-150e_kinetics400-rgb [--validate --
→˓seed 0 --deterministic]

For more details, you can refer to the Training part in the Training and Test Tutorial.

11.14.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test TPN model on Kinetics-400 dataset and dump the result to a json file.

python tools/test.py configs/recognition/tpn/tpn-slowonly_r50_8xb8-8x8x1-150e_
→˓kinetics400-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.
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11.14.5 Citation

@inproceedings{yang2020tpn,
title={Temporal Pyramid Network for Action Recognition},
author={Yang, Ceyuan and Xu, Yinghao and Shi, Jianping and Dai, Bo and Zhou, Bolei},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern␣

→˓Recognition (CVPR)},
year={2020},

}

11.15 TRN

Temporal Relational Reasoning in Videos

11.15.1 Abstract

Temporal relational reasoning, the ability to link meaningful transformations of objects or entities over time, is a fun-
damental property of intelligent species. In this paper, we introduce an effective and interpretable network module, the
Temporal Relation Network (TRN), designed to learn and reason about temporal dependencies between video frames
at multiple time scales. We evaluate TRN-equipped networks on activity recognition tasks using three recent video
datasets - Something-Something, Jester, and Charades - which fundamentally depend on temporal relational reasoning.
Our results demonstrate that the proposed TRN gives convolutional neural networks a remarkable capacity to discover
temporal relations in videos. Through only sparsely sampled video frames, TRN-equipped networks can accurately
predict human-object interactions in the Something-Something dataset and identify various human gestures on the
Jester dataset with very competitive performance. TRN-equipped networks also outperform two-stream networks and
3D convolution networks in recognizing daily activities in the Charades dataset. Further analyses show that the models
learn intuitive and interpretable visual common sense knowledge in videos.

11.15.2 Results and Models

Something-Something V1

Something-Something V2

1. The gpus indicates the number of gpus we used to get the checkpoint. If you want to use a different number of
gpus or videos per gpu, the best way is to set --auto-scale-lr when calling tools/train.py, this parameter
will auto-scale the learning rate according to the actual batch size and the original batch size.

2. There are two kinds of test settings for Something-Something dataset, efficient setting (center crop only) and
accurate setting (three crop and twice_sample).

3. In the original repository, the author augments data with random flipping on something-something dataset, but the
augmentation method may be wrong due to the direct actions, such as push left to right. So, we replaced
flip with flip with label mapping, and change the testing method TenCrop, which has five flipped crops,
to Twice Sample & ThreeCrop.

4. We use ResNet50 instead of BNInception as the backbone of TRN. When Training TRN-ResNet50 on sthv1
dataset in the original repository, we get top1 (top5) accuracy 30.542 (58.627) vs. ours 31.81 (60.47).

For more details on data preparation, you can refer to Something-something V1 and Something-something V2.
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11.15.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train TRN model on sthv1 dataset in a deterministic option with periodic validation.

python tools/train.py configs/recognition/trn/trn_imagenet-pretrained-r50_8xb16-1x1x8-
→˓50e_sthv1-rgb.py \

--seed=0 --deterministic

For more details, you can refer to the Training part in the Training and Test Tutorial.

11.15.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test TRN model on sthv1 dataset and dump the result to a pkl file.

python tools/test.py configs/recognition/trn/trn_imagenet-pretrained-r50_8xb16-1x1x8-50e_
→˓sthv1-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.

11.15.5 Citation
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year={2018}

}

11.16 TSM

TSM: Temporal Shift Module for Efficient Video Understanding
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11.16.1 Abstract

The explosive growth in video streaming gives rise to challenges on performing video understanding at high accuracy
and low computation cost. Conventional 2D CNNs are computationally cheap but cannot capture temporal relation-
ships; 3D CNN based methods can achieve good performance but are computationally intensive, making it expensive to
deploy. In this paper, we propose a generic and effective Temporal Shift Module (TSM) that enjoys both high efficiency
and high performance. Specifically, it can achieve the performance of 3D CNN but maintain 2D CNN’s complexity.
TSM shifts part of the channels along the temporal dimension; thus facilitate information exchanged among neighbor-
ing frames. It can be inserted into 2D CNNs to achieve temporal modeling at zero computation and zero parameters.
We also extended TSM to online setting, which enables real-time low-latency online video recognition and video ob-
ject detection. TSM is accurate and efficient: it ranks the first place on the Something-Something leaderboard upon
publication; on Jetson Nano and Galaxy Note8, it achieves a low latency of 13ms and 35ms for online video recognition.

11.16.2 Results and Models

Kinetics-400

Something-something V2

1. The gpus indicates the number of gpus we used to get the checkpoint. If you want to use a different number of
gpus or videos per gpu, the best way is to set --auto-scale-lr when calling tools/train.py, this parameter
will auto-scale the learning rate according to the actual batch size and the original batch size.

2. The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at Kinetics400-
Validation. The corresponding data list (each line is of the format ‘video_id, num_frames, label_index’) and the
label map are also available.

For more details on data preparation, you can refer to Kinetics400.

11.16.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train TSM model on Kinetics-400 dataset in a deterministic option.

python tools/train.py configs/recognition/tsm/tsm_imagenet-pretrained-r50_8xb16-1x1x8-
→˓50e_kinetics400-rgb.py \

--seed=0 --deterministic

For more details, you can refer to the Training part in the Training and Test Tutorial.
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11.16.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test TSM model on Kinetics-400 dataset and dump the result to a pkl file.

python tools/test.py configs/recognition/tsm/tsm_imagenet-pretrained-r50_8xb16-1x1x8-50e_
→˓kinetics400-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.

11.16.5 Citation
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11.17 TSN

Temporal segment networks: Towards good practices for deep action recognition

11.17.1 Abstract

Deep convolutional networks have achieved great success for visual recognition in still images. However, for action
recognition in videos, the advantage over traditional methods is not so evident. This paper aims to discover the prin-
ciples to design effective ConvNet architectures for action recognition in videos and learn these models given limited
training samples. Our first contribution is temporal segment network (TSN), a novel framework for video-based action
recognition. which is based on the idea of long-range temporal structure modeling. It combines a sparse temporal
sampling strategy and video-level supervision to enable efficient and effective learning using the whole action video.
The other contribution is our study on a series of good practices in learning ConvNets on video data with the help
of temporal segment network. Our approach obtains the state-the-of-art performance on the datasets of HMDB51 (
69.4%) and UCF101 (94.2%). We also visualize the learned ConvNet models, which qualitatively demonstrates the
effectiveness of temporal segment network and the proposed good practices.
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11.17.2 Results and Models

Kinetics-400

Something-Something V2

Using backbones from 3rd-party in TSN

It’s possible and convenient to use a 3rd-party backbone for TSN under the framework of MMAction2, here we provide
some examples for:

• [x] Backbones from MMClassification

• [x] Backbones from TorchVision

• [x] Backbones from TIMM (pytorch-image-models)

1. Note that some backbones in TIMM are not supported due to multiple reasons. Please refer to to PR ##880 for
details.

2. The gpus indicates the number of gpus we used to get the checkpoint. If you want to use a different number of
gpus or videos per gpu, the best way is to set --auto-scale-lr when calling tools/train.py, this parameter
will auto-scale the learning rate according to the actual batch size and the original batch size.

3. The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at Kinetics400-
Validation. The corresponding data list (each line is of the format ‘video_id, num_frames, label_index’) and the
label map are also available.

For more details on data preparation, you can refer to

• Kinetics

• Something-something V2

11.17.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train TSN model on Kinetics-400 dataset in a deterministic option.

python tools/train.py configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-
→˓100e_kinetics400-rgb.py \

--seed=0 --deterministic

For more details, you can refer to the Training part in the Training and Test Tutorial.
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11.17.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test TSN model on Kinetics-400 dataset and dump the result to a pkl file.

python tools/test.py configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-
→˓100e_kinetics400-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.

11.17.5 Citation
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11.18 UniFormer

UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning

11.18.1 Abstract

It is a challenging task to learn rich and multi-scale spatiotemporal semantics from high-dimensional videos, due to
large local redundancy and complex global dependency between video frames. The recent advances in this research
have been mainly driven by 3D convolutional neural networks and vision transformers. Although 3D convolution can
efficiently aggregate local context to suppress local redundancy from a small 3D neighborhood, it lacks the capability
to capture global dependency because of the limited receptive field. Alternatively, vision transformers can effectively
capture long-range dependency by self-attention mechanism, while having the limitation on reducing local redun-
dancy with blind similarity comparison among all the tokens in each layer. Based on these observations, we propose
a novel Unified transFormer (UniFormer) which seamlessly integrates merits of 3D convolution and spatiotemporal
self-attention in a concise transformer format, and achieves a preferable balance between computation and accuracy.
Different from traditional transformers, our relation aggregator can tackle both spatiotemporal redundancy and de-
pendency, by learning local and global token affinity respectively in shallow and deep layers. We conduct extensive
experiments on the popular video benchmarks, e.g., Kinetics-400, Kinetics-600, and Something-Something V1&V2.
With only ImageNet-1K pretraining, our UniFormer achieves 82.9%/84.8% top-1 accuracy on Kinetics-400/Kinetics-
600, while requiring 10x fewer GFLOPs than other state-of-the-art methods. For Something-Something V1 and V2,
our UniFormer achieves new state-of-the-art performances of 60.9% and 71.2% top-1 accuracy respectively.

80 Chapter 11. Action Recognition Models

https://arxiv.org/abs/2201.04676


MMAction2, Release 1.0.0rc3

11.18.2 Results and Models

Kinetics-400

The models are ported from the repo UniFormer and tested on our data. Currently, we only support the testing of
UniFormer models, training will be available soon.

1. The values in columns named after “reference” are the results of the original repo.

2. The values in top1/5 acc is tested on the same data list as the original repo, and the label map is provided by
UniFormer. The total videos are available at Kinetics400 (BaiduYun password: g5kp), which consists of 19787
videos.

3. The values in columns named after “mm-Kinetics” are the testing results on the Kinetics dataset held by MMAc-
tion2, which is also used by other models in MMAction2. Due to the differences between various versions of
Kinetics dataset, there is a little gap between top1/5 acc and mm-Kinetics top1/5 acc. For a fair compar-
ison with other models, we report both results here. Note that we simply report the inference results, since the
training set is different between UniFormer and other models, the results are lower than that tested on the author’s
version.

4. Since the original models for Kinetics-400/600/700 adopt different label file, we simply map the weight according
to the label name. New label map for Kinetics-400/600/700 can be found here.

5. Due to some difference between SlowFast and MMAction, there are some gaps between their performances.

For more details on data preparation, you can refer to preparing_kinetics.

11.18.3 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test UniFormer-S model on Kinetics-400 dataset and dump the result to a pkl file.

python tools/test.py configs/recognition/uniformer/uniformer-small_imagenet1k-pre_16x4x1_
→˓kinetics400-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.
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11.19 UniFormerV2

UniFormerV2: Spatiotemporal Learning by Arming Image ViTs with Video UniFormer

11.19.1 Abstract

Learning discriminative spatiotemporal representation is the key problem of video understanding. Recently, Vision
Transformers (ViTs) have shown their power in learning long-term video dependency with self-attention. Unfortu-
nately, they exhibit limitations in tackling local video redundancy, due to the blind global comparison among tokens.
UniFormer has successfully alleviated this issue, by unifying convolution and self-attention as a relation aggregator
in the transformer format. However, this model has to require a tiresome and complicated image-pretraining phrase,
before being finetuned on videos. This blocks its wide usage in practice. On the contrary, open-sourced ViTs are readily
available and well-pretrained with rich image supervision. Based on these observations, we propose a generic paradigm
to build a powerful family of video networks, by arming the pretrained ViTs with efficient UniFormer designs. We call
this family UniFormerV2, since it inherits the concise style of the UniFormer block. But it contains brand-new local
and global relation aggregators, which allow for preferable accuracy-computation balance by seamlessly integrating
advantages from both ViTs and UniFormer. Without any bells and whistles, our UniFormerV2 gets the state-of-the-art
recognition performance on 8 popular video benchmarks, including scene-related Kinetics-400/600/700 and Moments
in Time, temporal-related Something-Something V1/V2, untrimmed ActivityNet and HACS. In particular, it is the first
model to achieve 90% top-1 accuracy on Kinetics-400, to our best knowledge.

11.19.2 Results and Models

Kinetics-400

Kinetics-600

Kinetics-700

MiTv1

Kinetics-710

The models are ported from the repo UniFormerV2 and tested on our data. Currently, we only support the testing of
UniFormerV2 models, training will be available soon.

1. The values in columns named after “reference” are the results of the original repo.

2. The values in top1/5 acc is tested on the same data list as the original repo, and the label map is provided by
UniFormerV2.

3. The values in columns named after “mm-Kinetics” are the testing results on the Kinetics dataset held by MMAc-
tion2, which is also used by other models in MMAction2. Due to the differences between various versions of
Kinetics dataset, there is a little gap between top1/5 acc and mm-Kinetics top1/5 acc. For a fair compar-
ison with other models, we report both results here. Note that we simply report the inference results, since the
training set is different between UniFormer and other models, the results are lower than that tested on the author’s
version.

4. Since the original models for Kinetics-400/600/700 adopt different label file, we simply map the weight according
to the label name. New label map for Kinetics-400/600/700 can be found here.

5. Due to some differences between SlowFast and MMAction2, there are some gaps between their performances.
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6. Kinetics-710 is used for pretraining, which helps improve the performance on other datasets efficiently. You can
find more details in the paper.

For more details on data preparation, you can refer to

• preparing_kinetics

• preparing_mit

11.19.3 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test UniFormerV2-B/16 model on Kinetics-400 dataset and dump the result to a pkl file.

python tools/test.py configs/recognition/uniformerv2/uniformerv2-base-p16-res224_clip-
→˓kinetics710-pre_u8_kinetics400-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.

11.19.4 Citation

@article{Li2022UniFormerV2SL,
title={UniFormerV2: Spatiotemporal Learning by Arming Image ViTs with Video UniFormer},
author={Kunchang Li and Yali Wang and Yinan He and Yizhuo Li and Yi Wang and Limin␣

→˓Wang and Y. Qiao},
journal={ArXiv},
year={2022},
volume={abs/2211.09552}

}

11.20 VideoMAE

VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training

11.20.1 Abstract

Pre-training video transformers on extra large-scale datasets is generally required to achieve premier performance on
relatively small datasets. In this paper, we show that video masked autoencoders (VideoMAE) are data-efficient learners
for self-supervised video pre-training (SSVP). We are inspired by the recent ImageMAE and propose customized video
tube masking with an extremely high ratio. This simple design makes video reconstruction a more challenging self-
supervision task, thus encouraging extracting more effective video representations during this pre-training process.
We obtain three important findings on SSVP: (1) An extremely high proportion of masking ratio (i.e., 90% to 95%)
still yields favorable performance of VideoMAE. The temporally redundant video content enables a higher masking
ratio than that of images. (2) VideoMAE achieves impressive results on very small datasets (i.e., around 3k-4k videos)
without using any extra data. (3) VideoMAE shows that data quality is more important than data quantity for SSVP.
Domain shift between pre-training and target datasets is an important issue. Notably, our VideoMAE with the vanilla
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ViT can achieve 87.4% on Kinetics-400, 75.4% on Something-Something V2, 91.3% on UCF101, and 62.6% on
HMDB51, without using any extra data.

11.20.2 Results and Models

Kinetics-400

[1] The models are ported from the repo VideoMAE and tested on our data. Currently, we only support the testing of
VideoMAE models, training will be available soon.

1. The values in columns named after “reference” are the results of the original repo.

2. The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at Kinetics400-
Validation. The corresponding data list (each line is of the format ‘video_id, num_frames, label_index’) and the
label map are also available.

For more details on data preparation, you can refer to preparing_kinetics.

11.20.3 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test ViT-base model on Kinetics-400 dataset and dump the result to a pkl file.

python tools/test.py configs/recognition/videomae/vit-base-p16_videomae-k400-pre_16x4x1_
→˓kinetics-400.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.

11.20.4 Citation

@inproceedings{tong2022videomae,
title={Video{MAE}: Masked Autoencoders are Data-Efficient Learners for Self-Supervised␣

→˓Video Pre-Training},
author={Zhan Tong and Yibing Song and Jue Wang and Limin Wang},
booktitle={Advances in Neural Information Processing Systems},
year={2022}

}

11.21 X3D

X3D: Expanding Architectures for Efficient Video Recognition
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11.21.1 Abstract

This paper presents X3D, a family of efficient video networks that progressively expand a tiny 2D image classification
architecture along multiple network axes, in space, time, width and depth. Inspired by feature selection methods in
machine learning, a simple stepwise network expansion approach is employed that expands a single axis in each step,
such that good accuracy to complexity trade-off is achieved. To expand X3D to a specific target complexity, we perform
progressive forward expansion followed by backward contraction. X3D achieves state-of-the-art performance while
requiring 4.8x and 5.5x fewer multiply-adds and parameters for similar accuracy as previous work. Our most surprising
finding is that networks with high spatiotemporal resolution can perform well, while being extremely light in terms of
network width and parameters. We report competitive accuracy at unprecedented efficiency on video classification and
detection benchmarks.

11.21.2 Results and Models

Kinetics-400

[1] The models are ported from the repo SlowFast and tested on our data. Currently, we only support the testing of
X3D models, training will be available soon.

1. The values in columns named after “reference” are the results got by testing the checkpoint released on the
original repo and codes, using the same dataset with ours.

2. The validation set of Kinetics400 we used is same as the repo SlowFast, which is available here.

For more details on data preparation, you can refer to Kinetics400.

11.21.3 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test X3D model on Kinetics-400 dataset and dump the result to a pkl file.

python tools/test.py configs/recognition/x3d/x3d_s_13x6x1_facebook-kinetics400-rgb.py \
checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.

11.21.4 Citation

@misc{feichtenhofer2020x3d,
title={X3D: Expanding Architectures for Efficient Video Recognition},
author={Christoph Feichtenhofer},
year={2020},
eprint={2004.04730},
archivePrefix={arXiv},
primaryClass={cs.CV}

}
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11.22 ResNet for Audio

Audiovisual SlowFast Networks for Video Recognition

11.22.1 Abstract

We present Audiovisual SlowFast Networks, an architecture for integrated audiovisual perception. AVSlowFast has
Slow and Fast visual pathways that are deeply inte- grated with a Faster Audio pathway to model vision and sound in
a unified representation. We fuse audio and vi- sual features at multiple layers, enabling audio to con- tribute to the
formation of hierarchical audiovisual con- cepts. To overcome training difficulties that arise from dif- ferent learning dy-
namics for audio and visual modalities, we introduce DropPathway, which randomly drops the Au- dio pathway during
training as an effective regularization technique. Inspired by prior studies in neuroscience, we perform hierarchical au-
diovisual synchronization to learn joint audiovisual features. We report state-of-the-art results on six video action clas-
sification and detection datasets, perform detailed ablation studies, and show the gener- alization of AVSlowFast to learn
self-supervised audiovi- sual features. Code will be made available at: https: //github.com/facebookresearch/SlowFast.

11.22.2 Results and Models

Kinetics-400

1. The gpus indicates the number of gpus we used to get the checkpoint. It is noteworthy that the configs we provide
are used for 8 gpus as default. According to the Linear Scaling Rule, you may set the learning rate proportional
to the batch size if you use different GPUs or videos per GPU, e.g., lr=0.01 for 4 GPUs x 2 video/gpu and lr=0.08
for 16 GPUs x 4 video/gpu.

2. The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at Kinetics400-
Validation. The corresponding data list (each line is of the format ‘video_id, num_frames, label_index’) and the
label map are also available.

For more details on data preparation, you can refer to Prepare audio in Data Preparation Tutorial.

11.22.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train ResNet model on Kinetics-400 audio dataset in a deterministic option with periodic validation.

python tools/train.py configs/recognition_audio/resnet/tsn_r18_8xb320-64x1x1-100e_
→˓kinetics400-audio-feature.py \

--cfg-options randomness.seed=0 randomness.deterministic=True

For more details, you can refer to the Training part in the Training and Test Tutorial.
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11.22.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test ResNet model on Kinetics-400 audio dataset and dump the result to a pkl file.

python tools/test.py configs/recognition_audio/resnet/tsn_r18_8xb320-64x1x1-100e_
→˓kinetics400-audio-feature.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.

11.22.5 Citation

@article{xiao2020audiovisual,
title={Audiovisual SlowFast Networks for Video Recognition},
author={Xiao, Fanyi and Lee, Yong Jae and Grauman, Kristen and Malik, Jitendra and␣

→˓Feichtenhofer, Christoph},
journal={arXiv preprint arXiv:2001.08740},
year={2020}

}
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CHAPTER

TWELVE

SPATIO TEMPORAL ACTION DETECTION MODELS

12.1 ACRN

Actor-centric relation network

12.1.1 Abstract

Current state-of-the-art approaches for spatio-temporal action localization rely on detections at the frame level and
model temporal context with 3D ConvNets. Here, we go one step further and model spatio-temporal relations to
capture the interactions between human actors, relevant objects and scene elements essential to differentiate similar
human actions. Our approach is weakly supervised and mines the relevant elements automatically with an actor-centric
relational network (ACRN). ACRN computes and accumulates pair-wise relation information from actor and global
scene features, and generates relation features for action classification. It is implemented as neural networks and can
be trained jointly with an existing action detection system. We show that ACRN outperforms alternative approaches
which capture relation information, and that the proposed framework improves upon the state-of-the-art performance
on JHMDB and AVA. A visualization of the learned relation features confirms that our approach is able to attend to the
relevant relations for each action.

12.1.2 Results and Models

AVA2.1

AVA2.2

Note:

1. The gpus indicates the number of gpu we used to get the checkpoint. According to the Linear Scaling Rule, you
may set the learning rate proportional to the batch size if you use different GPUs or videos per GPU, e.g., lr=0.01
for 4 GPUs x 2 video/gpu and lr=0.08 for 16 GPUs x 4 video/gpu.

For more details on data preparation, you can refer to to AVA Data Preparation.
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12.1.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train ACRN with SlowFast backbone on AVA in a deterministic option.

python tools/train.py configs/detection/acrn/slowfast-acrn_kinetics400-pretrained-r50_
→˓8xb8-8x8x1-cosine-10e_ava21-rgb.py \

--cfg-options randomness.seed=0 randomness.deterministic=True

For more details and optional arguments infos, you can refer to the Training part in the Training and Test Tutorial.

12.1.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test ACRN with SlowFast backbone on AVA and dump the result to a pkl file.

python tools/test.py configs/detection/acrn/slowfast-acrn_kinetics400-pretrained-r50_
→˓8xb8-8x8x1-cosine-10e_ava21-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details and optional arguments infos, you can refer to the Test part in the Training and Test Tutorial.

12.1.5 Citation

@inproceedings{gu2018ava,
title={Ava: A video dataset of spatio-temporally localized atomic visual actions},
author={Gu, Chunhui and Sun, Chen and Ross, David A and Vondrick, Carl and Pantofaru,␣

→˓Caroline and Li, Yeqing and Vijayanarasimhan, Sudheendra and Toderici, George and␣
→˓Ricco, Susanna and Sukthankar, Rahul and others},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern␣

→˓Recognition},
pages={6047--6056},
year={2018}

}

@inproceedings{sun2018actor,
title={Actor-centric relation network},
author={Sun, Chen and Shrivastava, Abhinav and Vondrick, Carl and Murphy, Kevin and␣

→˓Sukthankar, Rahul and Schmid, Cordelia},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
pages={318--334},
year={2018}

}
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12.2 AVA

Ava: A video dataset of spatio-temporally localized atomic visual actions

12.2.1 Abstract

This paper introduces a video dataset of spatio-temporally localized Atomic Visual Actions (AVA). The AVA dataset
densely annotates 80 atomic visual actions in 430 15-minute video clips, where actions are localized in space and
time, resulting in 1.58M action labels with multiple labels per person occurring frequently. The key characteristics of
our dataset are: (1) the definition of atomic visual actions, rather than composite actions; (2) precise spatio-temporal
annotations with possibly multiple annotations for each person; (3) exhaustive annotation of these atomic actions over
15-minute video clips; (4) people temporally linked across consecutive segments; and (5) using movies to gather a
varied set of action representations. This departs from existing datasets for spatio-temporal action recognition, which
typically provide sparse annotations for composite actions in short video clips. We will release the dataset publicly.
AVA, with its realistic scene and action complexity, exposes the intrinsic difficulty of action recognition. To benchmark
this, we present a novel approach for action localization that builds upon the current state-of-the-art methods, and
demonstrates better performance on JHMDB and UCF101-24 categories. While setting a new state of the art on existing
datasets, the overall results on AVA are low at 15.6% mAP, underscoring the need for developing new approaches for
video understanding.

@inproceedings{feichtenhofer2019slowfast,
title={Slowfast networks for video recognition},
author={Feichtenhofer, Christoph and Fan, Haoqi and Malik, Jitendra and He, Kaiming},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={6202--6211},
year={2019}

}

12.2.2 Results and Models

AVA2.1

AVA2.2

Note:

1. The gpus indicates the number of gpu we used to get the checkpoint. According to the Linear Scaling Rule, you
may set the learning rate proportional to the batch size if you use different GPUs or videos per GPU, e.g., lr=0.01
for 4 GPUs x 2 video/gpu and lr=0.08 for 16 GPUs x 4 video/gpu.

2. With context indicates that using both RoI feature and global pooled feature for classification, which leads to
around 1% mAP improvement in general.

For more details on data preparation, you can refer to [AVA Data Preparation](https://
→˓github.com/open-mmlab/mmaction2/tree/master/tools/data/ava/README.md).

### Train

You can use the following command to train a model.

(continues on next page)
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(continued from previous page)

```shell
python tools/train.py ${CONFIG_FILE} [optional arguments]
```

Example: train the SlowOnly model on AVA in a deterministic option.

```shell
python tools/train.py configs/detection/ava/slowonly_kinetics400-pretrained-r50_8xb16-
→˓4x16x1-20e_ava21-rgb.py \

--cfg-options randomness.seed=0 randomness.deterministic=True
```

For more details, you can refer to the **Training** part in the [Training and Test␣
→˓Tutorial](en/user_guides/4_train_test.md).

### Test

You can use the following command to test a model.

```shell
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]
```

Example: test the SlowOnly model on AVA and dump the result to a pkl file.

```shell
python tools/test.py configs/detection/ava/slowonly_kinetics400-pretrained-r50_8xb16-
→˓4x16x1-20e_ava21-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl
```

For more details, you can refer to the **Test** part in the [Training and Test␣
→˓Tutorial](en/user_guides/4_train_test.md).

### Citation

<!-- [DATASET] -->

```BibTeX
@inproceedings{gu2018ava,
title={Ava: A video dataset of spatio-temporally localized atomic visual actions},
author={Gu, Chunhui and Sun, Chen and Ross, David A and Vondrick, Carl and Pantofaru,␣

→˓Caroline and Li, Yeqing and Vijayanarasimhan, Sudheendra and Toderici, George and␣
→˓Ricco, Susanna and Sukthankar, Rahul and others},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern␣

→˓Recognition},
pages={6047--6056},
year={2018}

}
```

```BibTeX

(continues on next page)
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(continued from previous page)

@article{duan2020omni,
title={Omni-sourced Webly-supervised Learning for Video Recognition},
author={Duan, Haodong and Zhao, Yue and Xiong, Yuanjun and Liu, Wentao and Lin, Dahua},
journal={arXiv preprint arXiv:2003.13042},
year={2020}

}
```
## AVA

[The AVA-Kinetics Localized Human Actions Video Dataset](https://arxiv.org/abs/2005.
→˓00214)

<!-- [ALGORITHM] -->

<div align="center">
<img src="https://user-images.githubusercontent.com/35267818/205511687-8cafd48c-7f4a-

→˓4a4c-a8e6-8182635b0411.png" width="800px"/>
</div>

### Abstract

<!-- [ABSTRACT] -->

This paper describes the AVA-Kinetics localized human actions video dataset. The dataset␣
→˓is collected by annotating videos from the Kinetics-700 dataset using the AVA␣
→˓annotation protocol, and extending the original AVA dataset with these new AVA␣
→˓annotated Kinetics clips. The dataset contains over 230k clips annotated with the 80␣
→˓AVA action classes for each of the humans in key-frames. We describe the annotation␣
→˓process and provide statistics about the new dataset. We also include a baseline␣
→˓evaluation using the Video Action Transformer Network on the AVA-Kinetics dataset,␣
→˓demonstrating improved performance for action classification on the AVA test set.

```BibTeX
@article{li2020ava,
title={The ava-kinetics localized human actions video dataset},
author={Li, Ang and Thotakuri, Meghana and Ross, David A and Carreira, Jo{\~a}o and␣

→˓Vostrikov, Alexander and Zisserman, Andrew},
journal={arXiv preprint arXiv:2005.00214},
year={2020}

}
```

### Results and Models

#### AVA2.2

Currently, we only use the training set of AVA-Kinetics and evaluate on the AVA2.2␣
→˓validation dataset. The AVA-Kinetics validation dataset will be supported soon.

<table border="1" class="docutils">
<thead>
<tr>

(continues on next page)
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(continued from previous page)

<th style="text-align: center;">frame sampling strategy</th>
<th style="text-align: center;">resolution</th>
<th style="text-align: center;">gpus</th>
<th style="text-align: center;">backbone</th>
<th style="text-align: center;">pretrain</th>
<th style="text-align: center;">mAP</th>
<th style="text-align: center;">config</th>
<th style="text-align: center;">ckpt</th>
<th style="text-align: center;">log</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: center;">4x16x1</td>
<td style="text-align: center;">raw</td>
<td style="text-align: center;">8</td>
<td style="text-align: center;">SlowOnly ResNet50</td>
<td style="text-align: center;">Kinetics-400</td>
<td style="text-align: center;">24.53</td>
<td style="text-align: center;"><a href="https://github.com/open-mmlab/mmaction2/tree/
→˓master/configs/detection/ava_kinetics/slowonly_k400-pre-r50_8xb8-4x16x1-10e_ava-
→˓kinetics-rgb.py">config</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k400-pre-r50_8xb8-4x16x1-10e_ava-kinetics-rgb/slowonly_
→˓k400-pre-r50_8xb8-4x16x1-10e_ava-kinetics-rgb_20221205-33e3ca7c.pth">ckpt</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k400-pre-r50_8xb8-4x16x1-10e_ava-kinetics-rgb/slowonly_
→˓k400-pre-r50_8xb8-4x16x1-10e_ava-kinetics-rgb.log">log</a></td>
</tr>
<tr>
<td style="text-align: center;">4x16x1</td>
<td style="text-align: center;">raw</td>
<td style="text-align: center;">8</td>
<td style="text-align: center;">SlowOnly ResNet50</td>
<td style="text-align: center;">Kinetics-700</td>
<td style="text-align: center;">25.87</td>
<td style="text-align: center;"><a href="https://github.com/open-mmlab/mmaction2/tree/
→˓master/configs/detection/ava_kinetics/slowonly_k700-pre-r50_8xb8-4x16x1-10e_ava-
→˓kinetics-rgb.py">config</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k700-pre-r50_8xb8-4x16x1-10e_ava-kinetics-rgb/slowonly_
→˓k700-pre-r50_8xb8-4x16x1-10e_ava-kinetics-rgb_20221205-a07e8c15.pth">ckpt</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k700-pre-r50_8xb8-4x16x1-10e_ava-kinetics-rgb/slowonly_
→˓k700-pre-r50_8xb8-4x16x1-10e_ava-kinetics-rgb.log">log</a></td>
</tr>
<tr>
<td style="text-align: center;">8x8x1</td>
<td style="text-align: center;">raw</td>
<td style="text-align: center;">8</td>
<td style="text-align: center;">SlowOnly ResNet50</td>
<td style="text-align: center;">Kinetics-400</td>
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<td style="text-align: center;">26.10</td>
<td style="text-align: center;"><a href="https://github.com/open-mmlab/mmaction2/tree/
→˓master/configs/detection/ava_kinetics/slowonly_k400-pre-r50_8xb8-8x8x1-10e_ava-
→˓kinetics-rgb.py">config</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k400-pre-r50_8xb8-8x8x1-10e_ava-kinetics-rgb/slowonly_
→˓k400-pre-r50_8xb8-8x8x1-10e_ava-kinetics-rgb_20221205-8f8dff3b.pth">ckpt</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k400-pre-r50_8xb8-8x8x1-10e_ava-kinetics-rgb/slowonly_
→˓k400-pre-r50_8xb8-8x8x1-10e_ava-kinetics-rgb.log">log</a></td>
</tr>
<tr>
<td style="text-align: center;">8x8x1</td>
<td style="text-align: center;">raw</td>
<td style="text-align: center;">8</td>
<td style="text-align: center;">SlowOnly ResNet50</td>
<td style="text-align: center;">Kinetics-700</td>
<td style="text-align: center;">27.82</td>
<td style="text-align: center;"><a href="https://github.com/open-mmlab/mmaction2/tree/
→˓master/configs/detection/ava_kinetics/slowonly_k700-pre-r50_8xb8-8x8x1-10e_ava-
→˓kinetics-rgb.py">config</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k700-pre-r50_8xb8-8x8x1-10e_ava-kinetics-rgb/slowonly_
→˓k700-pre-r50_8xb8-8x8x1-10e_ava-kinetics-rgb_20221205-16a01c37.pth">ckpt</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k700-pre-r50_8xb8-8x8x1-10e_ava-kinetics-rgb/slowonly_
→˓k700-pre-r50_8xb8-8x8x1-10e_ava-kinetics-rgb.log">log</a></td>
</tr>
</tbody>
</table>

#### Training with tricks

We conduct ablation studies to show the improvements of training tricks using␣
→˓SlowOnly8x8 pretrained on the Kinetics700 dataset. The baseline is the last raw in␣
→˓[AVA2.2](https://github.com/hukkai/mmaction2/tree/ava-kinetics-exp/configs/detection/
→˓ava_kinetics##ava22).

<table border="1" class="docutils">
<thead>
<tr>
<th style="text-align: center;">method</th>
<th style="text-align: center;">frame sampling strategy</th>
<th style="text-align: center;">resolution</th>
<th style="text-align: center;">gpus</th>
<th style="text-align: center;">backbone</th>
<th style="text-align: center;">pretrain</th>
<th style="text-align: center;">mAP</th>
<th style="text-align: center;">config</th>
<th style="text-align: center;">ckpt</th>
<th style="text-align: center;">log</th>
</tr>
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</thead>
<tbody>
<tr>
<td style="text-align: center;">baseline</td>
<td style="text-align: center;">8x8x1</td>
<td style="text-align: center;">raw</td>
<td style="text-align: center;">8</td>
<td style="text-align: center;">SlowOnly ResNet50</td>
<td style="text-align: center;">Kinetics-700</td>
<td style="text-align: center;">27.82</td>
<td style="text-align: center;"><a href="https://github.com/open-mmlab/mmaction2/tree/
→˓master/configs/detection/ava_kinetics/slowonly_k700-pre-r50_8xb8-8x8x1-10e_ava-
→˓kinetics-rgb.py">config</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k700-pre-r50_8xb8-8x8x1-10e_ava-kinetics-rgb/slowonly_
→˓k700-pre-r50_8xb8-8x8x1-10e_ava-kinetics-rgb_20221205-16a01c37.pth">ckpt</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k700-pre-r50_8xb8-8x8x1-10e_ava-kinetics-rgb/slowonly_
→˓k700-pre-r50_8xb8-8x8x1-10e_ava-kinetics-rgb.log">log</a></td>
</tr>
<tr>
<td style="text-align: center;">+ context</td>
<td style="text-align: center;">8x8x1</td>
<td style="text-align: center;">raw</td>
<td style="text-align: center;">8</td>
<td style="text-align: center;">SlowOnly ResNet50</td>
<td style="text-align: center;">Kinetics-700</td>
<td style="text-align: center;">28.31</td>
<td style="text-align: center;"><a href="https://github.com/open-mmlab/mmaction2/tree/
→˓master/configs/detection/ava_kinetics/slowonly_k700-pre-r50-context_8xb8-8x8x1-10e_ava-
→˓kinetics-rgb.py">config</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k700-pre-r50-context_8xb8-8x8x1-10e_ava-kinetics-rgb/
→˓slowonly_k700-pre-r50-context_8xb8-8x8x1-10e_ava-kinetics-rgb_20221205-5d514f8c.pth">
→˓ckpt</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k700-pre-r50-context_8xb8-8x8x1-10e_ava-kinetics-rgb/
→˓slowonly_k700-pre-r50-context_8xb8-8x8x1-10e_ava-kinetics-rgb.log">log</a></td>
</tr>
<tr>
<td style="text-align: center;">+ temporal max pooling</td>
<td style="text-align: center;">8x8x1</td>
<td style="text-align: center;">raw</td>
<td style="text-align: center;">8</td>
<td style="text-align: center;">SlowOnly ResNet50</td>
<td style="text-align: center;">Kinetics-700</td>
<td style="text-align: center;">28.48</td>
<td style="text-align: center;"><a href="https://github.com/open-mmlab/mmaction2/tree/
→˓master/configs/detection/ava_kinetics/slowonly_k700-pre-r50-context-temporal-max_8xb8-
→˓8x8x1-10e_ava-kinetics-rgb.py">config</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k700-pre-r50-context-temporal-max_8xb8-8x8x1-10e_ava-
→˓kinetics-rgb/slowonly_k700-pre-r50-context-temporal-max_8xb8-8x8x1-10e_ava-kinetics-
→˓rgb_20221205-5b5e71eb.pth">ckpt</a></td>
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<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k700-pre-r50-context-temporal-max_8xb8-8x8x1-10e_ava-
→˓kinetics-rgb/slowonly_k700-pre-r50-context-temporal-max_8xb8-8x8x1-10e_ava-kinetics-
→˓rgb.log">log</a></td>
</tr>
<tr>
<td style="text-align: center;">+ nonlinear head</td>
<td style="text-align: center;">8x8x1</td>
<td style="text-align: center;">raw</td>
<td style="text-align: center;">8</td>
<td style="text-align: center;">SlowOnly ResNet50</td>
<td style="text-align: center;">Kinetics-700</td>
<td style="text-align: center;">29.83</td>
<td style="text-align: center;"><a href="https://github.com/open-mmlab/mmaction2/tree/
→˓master/configs/detection/ava_kinetics/slowonly_k700-pre-r50-context-temporal-max-nl-
→˓head_8xb8-8x8x1-10e_ava-kinetics-rgb.py">config</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k700-pre-r50-context-temporal-max-nl-head_8xb8-8x8x1-
→˓10e_ava-kinetics-rgb/slowonly_k700-pre-r50-context-temporal-max-nl-head_8xb8-8x8x1-10e_
→˓ava-kinetics-rgb_20221205-87624265.pth">ckpt</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k700-pre-r50-context-temporal-max-nl-head_8xb8-8x8x1-
→˓10e_ava-kinetics-rgb/slowonly_k700-pre-r50-context-temporal-max-nl-head_8xb8-8x8x1-10e_
→˓ava-kinetics-rgb.log">log</a></td>
</tr>
<tr>
<td style="text-align: center;">+ focal loss</td>
<td style="text-align: center;">8x8x1</td>
<td style="text-align: center;">raw</td>
<td style="text-align: center;">8</td>
<td style="text-align: center;">SlowOnly ResNet50</td>
<td style="text-align: center;">Kinetics-700</td>
<td style="text-align: center;">30.33</td>
<td style="text-align: center;"><a href="https://github.com/open-mmlab/mmaction2/tree/
→˓master/configs/detection/ava_kinetics/slowonly_k700-pre-r50-context-temporal-max-nl-
→˓head_8xb8-8x8x1-focal-10e_ava-kinetics-rgb.py">config</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k700-pre-r50-context-temporal-max-nl-head_8xb8-8x8x1-
→˓focal-10e_ava-kinetics-rgb/slowonly_k700-pre-r50-context-temporal-max-nl-head_8xb8-
→˓8x8x1-focal-10e_ava-kinetics-rgb_20221205-37aa8395.pth">ckpt</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k700-pre-r50-context-temporal-max-nl-head_8xb8-8x8x1-
→˓focal-10e_ava-kinetics-rgb/slowonly_k700-pre-r50-context-temporal-max-nl-head_8xb8-
→˓8x8x1-focal-10e_ava-kinetics-rgb.log">log</a></td>
</tr>
<tr>
<td style="text-align: center;">+ more frames</td>
<td style="text-align: center;">16x4x1</td>
<td style="text-align: center;">raw</td>
<td style="text-align: center;">8</td>
<td style="text-align: center;">SlowOnly ResNet50</td>
<td style="text-align: center;">Kinetics-700</td>
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<td style="text-align: center;">31.29</td>
<td style="text-align: center;"><a href="https://github.com/open-mmlab/mmaction2/tree/
→˓master/configs/detection/ava_kinetics/slowonly_k700-pre-r50_8xb8-16x4x1-10e-tricks_ava-
→˓kinetics-rgb.py">config</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k700-pre-r50_8xb8-16x4x1-10e-tricks_ava-kinetics-rgb/
→˓slowonly_k700-pre-r50_8xb8-16x4x1-10e-tricks_ava-kinetics-rgb_20221205-dd652f81.pth">
→˓ckpt</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/ava_kinetics/slowonly_k700-pre-r50_8xb8-16x4x1-10e-tricks_ava-kinetics-rgb/
→˓slowonly_k700-pre-r50_8xb8-16x4x1-10e-tricks_ava-kinetics-rgb.log">log</a></td>
</tr>
</tbody>
</table>

Note:

The **gpus** indicates the number of gpu we used to get the checkpoint; **+ context**␣
→˓indicates that using both RoI feature and global pooled feature for classification;␣
→˓**+ temporal max pooling** indicates that using max pooling in the temporal dimension␣
→˓for the feature; **nonlinear head** indicates that using a 2-layer mlp instead of a␣
→˓linear classifier.

For more details on data preparation, you can refer to [AVA-Kinetics Data␣
→˓Preparation](https://github.com/open-mmlab/mmaction2/tree/master/tools/data/ava_
→˓kinetics/README.md).

### Train

You can use the following command to train a model.

```shell
python tools/train.py ${CONFIG_FILE} [optional arguments]
```

Example: train the SlowOnly model on AVA-Kinetics in a deterministic option.

```shell
python tools/train.py configs/detection/ava_kinetics/slowonly_k400-pre-r50_8xb8-4x16x1-
→˓10e_ava-kinetics-rgb.py \

--cfg-options randomness.seed=0 randomness.deterministic=True
```

For more details, you can refer to the **Training** part in the [Training and Test␣
→˓Tutorial](en/user_guides/4_train_test.md).

### Test

You can use the following command to test a model.

```shell
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]
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```

Example: test the SlowOnly model on AVA-Kinetics and dump the result to a pkl file.

```shell
python tools/test.py configs/detection/ava_kinetics/slowonly_k400-pre-r50_8xb8-4x16x1-
→˓10e_ava-kinetics-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl
```

For more details, you can refer to the **Test** part in the [Training and Test␣
→˓Tutorial](en/user_guides/4_train_test.md).

### Citation

<!-- [DATASET] -->

```BibTeX
@article{li2020ava,
title={The ava-kinetics localized human actions video dataset},
author={Li, Ang and Thotakuri, Meghana and Ross, David A and Carreira, Jo{\~a}o and␣

→˓Vostrikov, Alexander and Zisserman, Andrew},
journal={arXiv preprint arXiv:2005.00214},
year={2020}

}
```
## LFB

[Long-term feature banks for detailed video understanding](https://openaccess.thecvf.com/
→˓content_CVPR_2019/html/Wu_Long-Term_Feature_Banks_for_Detailed_Video_Understanding_
→˓CVPR_2019_paper.html)

<!-- [ALGORITHM] -->

### Abstract

<!-- [ABSTRACT] -->

To understand the world, we humans constantly need to relate the present to the past,␣
→˓and put events in context. In this paper, we enable existing video models to do the␣
→˓same. We propose a long-term feature bank---supportive information extracted over the␣
→˓entire span of a video---to augment state-of-the-art video models that otherwise would␣
→˓only view short clips of 2-5 seconds. Our experiments demonstrate that augmenting 3D␣
→˓convolutional networks with a long-term feature bank yields state-of-the-art results␣
→˓on three challenging video datasets: AVA, EPIC-Kitchens, and Charades.

<!-- [IMAGE] -->

<div align=center>
<img src="https://user-images.githubusercontent.com/34324155/143016220-21d90fb3-fd9f-
→˓499c-820f-f6c421bda7aa.png" width="800"/>
</div>
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### Results and Models

#### AVA2.1

<table border="1" class="docutils">
<thead>
<tr>
<th style="text-align: center;">frame sampling strategy</th>
<th style="text-align: center;">resolution</th>
<th style="text-align: center;">gpus</th>
<th style="text-align: center;">backbone</th>
<th style="text-align: center;">pretrain</th>
<th style="text-align: center;">mAP</th>
<th style="text-align: center;">gpu_mem(M)</th>
<th style="text-align: center;">config</th>
<th style="text-align: center;">ckpt</th>
<th style="text-align: center;">log</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: center;">4x16x1</td>
<td style="text-align: center;">raw</td>
<td style="text-align: center;">8</td>
<td style="text-align: center;">SlowOnly ResNet50 (with Nonlocal LFB)</td>
<td style="text-align: center;">Kinetics-400</td>
<td style="text-align: center;">24.05</td>
<td style="text-align: center;">8620</td>
<td style="text-align: center;"><a href="https://github.com/open-mmlab/mmaction2/tree/
→˓master/configs/detection/lfb/slowonly-lfb-nl_kinetics400-pretrained-r50_8xb12-4x16x1-
→˓20e_ava21-rgb.py">config</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/lfb/slowonly-lfb-nl_kinetics400-pretrained-r50_8xb12-4x16x1-20e_ava21-rgb/
→˓slowonly-lfb-nl_kinetics400-pretrained-r50_8xb12-4x16x1-20e_ava21-rgb_20220906-
→˓4c5b9f25.pth">ckpt</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/lfb/slowonly-lfb-nl_kinetics400-pretrained-r50_8xb12-4x16x1-20e_ava21-rgb/
→˓slowonly-lfb-nl_kinetics400-pretrained-r50_8xb12-4x16x1-20e_ava21-rgb.log">log</a></td>
</tr>
<tr>
<td style="text-align: center;">4x16x1</td>
<td style="text-align: center;">raw</td>
<td style="text-align: center;">8</td>
<td style="text-align: center;">SlowOnly ResNet50 (with Max LFB)</td>
<td style="text-align: center;">Kinetics-400</td>
<td style="text-align: center;">22.15</td>
<td style="text-align: center;">8425</td>
<td style="text-align: center;"><a href="https://github.com/open-mmlab/mmaction2/tree/
→˓master/configs/detection/lfb/slowonly-lfb-max_kinetics400-pretrained-r50_8xb12-4x16x1-
→˓20e_ava21-rgb.py">config</a></td>
<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/lfb/slowonly-lfb-max_kinetics400-pretrained-r50_8xb12-4x16x1-20e_ava21-rgb/
→˓slowonly-lfb-max_kinetics400-pretrained-r50_8xb12-4x16x1-20e_ava21-rgb_20220906-
→˓4963135b.pth">ckpt</a></td>
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<td style="text-align: center;"><a href="https://download.openmmlab.com/mmaction/v1.0/
→˓detection/lfb/slowonly-lfb-max_kinetics400-pretrained-r50_8xb12-4x16x1-20e_ava21-rgb/
→˓slowonly-lfb-max_kinetics400-pretrained-r50_8xb12-4x16x1-20e_ava21-rgb.log">log</a></
→˓td>
</tr>
</tbody>
</table>

Note:

1. The **gpus** indicates the number of gpu we used to get the checkpoint.
According to the [Linear Scaling Rule](https://arxiv.org/abs/1706.02677), you may set␣

→˓the learning rate proportional to the batch size if you use different GPUs or videos␣
→˓per GPU,

e.g., lr=0.01 for 4 GPUs x 2 video/gpu and lr=0.08 for 16 GPUs x 4 video/gpu.
2. We use `slowonly_r50_4x16x1` instead of `I3D-R50-NL` in the original paper as the␣
→˓backbone of LFB, but we have achieved the similar improvement: (ours: 20.1 -> 24.05 vs.
→˓ author: 22.1 -> 25.8).
3. Because the long-term features are randomly sampled in testing, the test accuracy may␣
→˓have some differences.
4. Before train or test lfb, you need to infer feature bank with the [slowonly-lfb_ava-
→˓pretrained-r50_infer-4x16x1_ava21-rgb.py](https://github.com/open-mmlab/mmaction2/tree/
→˓master/configs/detection/lfb/slowonly-lfb_ava-pretrained-r50_infer-4x16x1_ava21-rgb.
→˓py). For more details on infer feature bank, you can refer to [Train](##Train) part.
5. You can also dowonload long-term feature bank from [AVA_train_val_float32_lfb](https:/
→˓/download.openmmlab.com/mmaction/detection/lfb/AVA_train_val_float32_lfb.rar) or [AVA_
→˓train_val_float16_lfb](https://download.openmmlab.com/mmaction/detection/lfb/AVA_train_
→˓val_float16_lfb.rar), and then put them on `lfb_prefix_path`.
6. The ROIHead now supports single-label classification (i.e. the network outputs at most

one-label per actor). This can be done by (a) setting multilabel=False during␣
→˓training and

the test_cfg.rcnn.action_thr for testing.

### Train

#### a. Infer long-term feature bank for training

Before train or test lfb, you need to infer long-term feature bank first.

Specifically, run the test on the training, validation, testing dataset with the config␣
→˓file [slowonly-lfb_ava-pretrained-r50_infer-4x16x1_ava21-rgb.py](https://github.com/
→˓open-mmlab/mmaction2/tree/master/configs/detection/lfb/slowonly-lfb_ava-pretrained-r50_
→˓infer-4x16x1_ava21-rgb.py) (The config file will only infer the feature bank of␣
→˓training dataset and you need set `dataset_mode = 'val'` to infer the feature bank of␣
→˓validation dataset in the config file.), and the shared head [LFBInferHead](https://
→˓github.com/open-mmlab/mmaction2/tree/master/mmaction/models/roi_heads/shared_heads/lfb_
→˓infer_head.py) will generate the feature bank.

A long-term feature bank file of AVA training and validation datasets with float32␣
→˓precision occupies 3.3 GB. If store the features with float16 precision, the feature␣
→˓bank occupies 1.65 GB.

(continues on next page)
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(continued from previous page)

You can use the following command to infer feature bank of AVA training and validation␣
→˓dataset and the feature bank will be stored in `lfb_prefix_path/lfb_train.pkl` and␣
→˓`lfb_prefix_path/lfb_val.pkl`.

```shell
## set `dataset_mode = 'train'` in lfb_slowonly_r50_ava_infer.py
python tools/test.py slowonly-lfb_ava-pretrained-r50_infer-4x16x1_ava21-rgb.py \

checkpoints/YOUR_BASELINE_CHECKPOINT.pth --eval mAP

## set `dataset_mode = 'val'` in lfb_slowonly_r50_ava_infer.py
python tools/test.py slowonly-lfb_ava-pretrained-r50_infer-4x16x1_ava21-rgb.py \

checkpoints/YOUR_BASELINE_CHECKPOINT.pth --eval mAP
```

We use [slowonly_r50_4x16x1 checkpoint](https://download.openmmlab.com/mmaction/
→˓detection/ava/slowonly_kinetics_pretrained_r50_4x16x1_20e_ava_rgb/slowonly_kinetics_
→˓pretrained_r50_4x16x1_20e_ava_rgb_20201217-40061d5f.pth) from [slowonly_kinetics400-
→˓pretrained-r50_8xb16-4x16x1-20e_ava21-rgb](https://github.com/open-mmlab/mmaction2/
→˓tree/master/configs/detection/ava/slowonly_kinetics400-pretrained-r50_8xb16-4x16x1-20e_
→˓ava21-rgb.py) to infer feature bank.

#### b. Train LFB

You can use the following command to train a model.

```shell
python tools/train.py ${CONFIG_FILE} [optional arguments]
```

Example: train LFB model on AVA with half-precision long-term feature bank.

```shell
python tools/train.py configs/detection/lfb/slowonly-lfb-nl_kinetics400-pretrained-r50_
→˓8xb12-4x16x1-20e_ava21-rgb.py \
--validate --seed 0 --deterministic

```

For more details and optional arguments infos, you can refer to the **Training** part in␣
→˓the [Training and Test Tutorial](en/user_guides/4_train_test.md).

### Test

#### a. Infer long-term feature bank for testing

Before train or test lfb, you also need to infer long-term feature bank first. If you␣
→˓have generated the feature bank file, you can skip it.

The step is the same with **Infer long-term feature bank for training** part in [Train](#
→˓#Train).

#### b. Test LFB

(continues on next page)
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You can use the following command to test a model.

```shell
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]
```

Example: test LFB model on AVA with half-precision long-term feature bank and dump the␣
→˓result to a pkl file.

```shell
python tools/test.py configs/detection/lfb/slowonly-lfb-nl_kinetics400-pretrained-r50_
→˓8xb12-4x16x1-20e_ava21-rgb.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl
```

For more details, you can refer to the **Test** part in the [Training and Test␣
→˓Tutorial](en/user_guides/4_train_test.md).

### Citation

<!-- [DATASET] -->

```BibTeX
@inproceedings{gu2018ava,
title={Ava: A video dataset of spatio-temporally localized atomic visual actions},
author={Gu, Chunhui and Sun, Chen and Ross, David A and Vondrick, Carl and Pantofaru,␣

→˓Caroline and Li, Yeqing and Vijayanarasimhan, Sudheendra and Toderici, George and␣
→˓Ricco, Susanna and Sukthankar, Rahul and others},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern␣

→˓Recognition},
pages={6047--6056},
year={2018}

}
```

```BibTeX
@inproceedings{wu2019long,
title={Long-term feature banks for detailed video understanding},
author={Wu, Chao-Yuan and Feichtenhofer, Christoph and Fan, Haoqi and He, Kaiming and␣

→˓Krahenbuhl, Philipp and Girshick, Ross},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern␣

→˓Recognition},
pages={284--293},
year={2019}

}
```
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SKELETON-BASED ACTION RECOGNITION MODELS

13.1 AGCN

Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition

13.1.1 Abstract

In skeleton-based action recognition, graph convolutional networks (GCNs), which model the human body skeletons as
spatiotemporal graphs, have achieved remarkable performance. However, in existing GCN-based methods, the topology
of the graph is set manually, and it is fixed over all layers and input samples. This may not be optimal for the hierarchical
GCN and diverse samples in action recognition tasks. In addition, the second-order information (the lengths and
directions of bones) of the skeleton data, which is naturally more informative and discriminative for action recognition,
is rarely investigated in existing methods. In this work, we propose a novel two-stream adaptive graph convolutional
network (2s-AGCN) for skeleton-based action recognition. The topology of the graph in our model can be either
uniformly or individually learned by the BP algorithm in an end-to-end manner. This data-driven method increases the
flexibility of the model for graph construction and brings more generality to adapt to various data samples. Moreover,
a two-stream framework is proposed to model both the first-order and the second-order information simultaneously,
which shows notable improvement for the recognition accuracy. Extensive experiments on the two large-scale datasets,
NTU-RGBD and Kinetics-Skeleton, demonstrate that the performance of our model exceeds the state-of-the-art with
a significant margin.

13.1.2 Results and Models

NTU60_XSub_2D

NTU60_XSub_3D

1. The gpus indicates the number of gpus we used to get the checkpoint. If you want to use a different number of
gpus or videos per gpu, the best way is to set --auto-scale-lr when calling tools/train.py, this parameter
will auto-scale the learning rate according to the actual batch size, and the original batch size.

2. For two-stream fusion, we use joint : bone = 1 : 1. For four-stream fusion, we use joint : joint-motion : bone
: bone-motion = 2 : 1 : 2 : 1. For more details about multi-stream fusion, please refer to this tutorial.
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13.1.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train STGCN model on NTU60-2D dataset in a deterministic option with periodic validation.

python tools/train.py configs/skeleton/2s-agcn/2s-agcn_8xb16-joint-u100-80e_ntu60-xsub-
→˓keypoint-2d.py \

--seed 0 --deterministic

For more details, you can refer to the Training part in the Training and Test Tutorial.

13.1.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test AGCN model on NTU60-2D dataset and dump the result to a pickle file.

python tools/test.py configs/skeleton/2s-agcn/2s-agcn_8xb16-joint-u100-80e_ntu60-xsub-
→˓keypoint-2d.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.

13.1.5 Citation

@inproceedings{shi2019two,
title={Two-stream adaptive graph convolutional networks for skeleton-based action␣

→˓recognition},
author={Shi, Lei and Zhang, Yifan and Cheng, Jian and Lu, Hanqing},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern␣

→˓recognition},
pages={12026--12035},
year={2019}

}

13.2 PoseC3D

Revisiting Skeleton-based Action Recognition
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13.2.1 Abstract

Human skeleton, as a compact representation of human action, has received increasing attention in recent years. Many
skeleton-based action recognition methods adopt graph convolutional networks (GCN) to extract features on top of
human skeletons. Despite the positive results shown in previous works, GCN-based methods are subject to limitations
in robustness, interoperability, and scalability. In this work, we propose PoseC3D, a new approach to skeleton-based
action recognition, which relies on a 3D heatmap stack instead of a graph sequence as the base representation of hu-
man skeletons. Compared to GCN-based methods, PoseC3D is more effective in learning spatiotemporal features,
more robust against pose estimation noises, and generalizes better in cross-dataset settings. Also, PoseC3D can han-
dle multiple-person scenarios without additional computation cost, and its features can be easily integrated with other
modalities at early fusion stages, which provides a great design space to further boost the performance. On four chal-
lenging datasets, PoseC3D consistently obtains superior performance, when used alone on skeletons and in combination
with the RGB modality.

13.2.2 Results and Models

FineGYM

NTU60_XSub

UCF101

HMDB51

1. The gpus indicates the number of gpu we used to get the checkpoint. It is noteworthy that the configs we provide
are used for 8 gpus as default. According to the Linear Scaling Rule, you may set the learning rate proportional to
the batch size if you use different GPUs or videos per GPU, e.g., lr=0.01 for 8 GPUs x 8 videos/gpu and lr=0.04
for 16 GPUs x 16 videos/gpu.

2. You can follow the guide in Preparing Skeleton Dataset to obtain skeleton annotations used in the above configs.

13.2.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train PoseC3D model on FineGYM dataset in a deterministic option.

python tools/train.py configs/skeleton/posec3d/slowonly_r50_8xb16-u48-240e_gym-keypoint.
→˓py \

--cfg-options randomness.seed=0 randomness.deterministic=True

For training with your custom dataset, you can refer to Custom Dataset Training.

For more details, you can refer to the Training part in the Training and Test Tutorial.
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13.2.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test PoseC3D model on FineGYM dataset.

python tools/test.py configs/skeleton/posec3d/slowonly_r50_8xb16-u48-240e_gym-keypoint.
→˓py \

checkpoints/SOME_CHECKPOINT.pth

For more details, you can refer to the Test part in the Training and Test Tutorial.

13.2.5 Citation

@misc{duan2021revisiting,
title={Revisiting Skeleton-based Action Recognition},
author={Haodong Duan and Yue Zhao and Kai Chen and Dian Shao and Dahua Lin and Bo␣

→˓Dai},
year={2021},
eprint={2104.13586},
archivePrefix={arXiv},
primaryClass={cs.CV}

}

13.3 STGCN

Spatial temporal graph convolutional networks for skeleton-based action recognition

13.3.1 Abstract

Dynamics of human body skeletons convey significant information for human action recognition. Conventional ap-
proaches for modeling skeletons usually rely on hand-crafted parts or traversal rules, thus resulting in limited expres-
sive power and difficulties of generalization. In this work, we propose a novel model of dynamic skeletons called
Spatial-Temporal Graph Convolutional Networks (ST-GCN), which moves beyond the limitations of previous meth-
ods by automatically learning both the spatial and temporal patterns from data. This formulation not only leads to
greater expressive power but also stronger generalization capability. On two large datasets, Kinetics and NTU-RGBD,
it achieves substantial improvements over mainstream methods.
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13.3.2 Results and Models

NTU60_XSub_2D

NTU60_XSub_3D

NTU120_XSub_2D

NTU120_XSub_3D

1. The gpus indicates the number of gpus we used to get the checkpoint. If you want to use a different number of
gpus or videos per gpu, the best way is to set --auto-scale-lr when calling tools/train.py, this parameter
will auto-scale the learning rate according to the actual batch size, and the original batch size.

2. For two-stream fusion, we use joint : bone = 1 : 1. For four-stream fusion, we use joint : joint-motion : bone
: bone-motion = 2 : 1 : 2 : 1. For more details about multi-stream fusion, please refer to this tutorial.

13.3.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train STGCN model on NTU60-2D dataset in a deterministic option with periodic validation.

python tools/train.py configs/skeleton/stgcn/stgcn_8xb16-joint-u100-80e_ntu60-xsub-
→˓keypoint-2d.py \

--seed 0 --deterministic

For more details, you can refer to the Training part in the Training and Test Tutorial.

13.3.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test STGCN model on NTU60-2D dataset and dump the result to a pickle file.

python tools/test.py configs/skeleton/stgcn/stgcn_8xb16-joint-u100-80e_ntu60-xsub-
→˓keypoint-2d.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.
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13.3.5 Citation

@inproceedings{yan2018spatial,
title={Spatial temporal graph convolutional networks for skeleton-based action␣

→˓recognition},
author={Yan, Sijie and Xiong, Yuanjun and Lin, Dahua},
booktitle={Thirty-second AAAI conference on artificial intelligence},
year={2018}

}

13.4 STGCN++

PYSKL: Towards Good Practices for Skeleton Action Recognition

13.4.1 Abstract

We present PYSKL: an open-source toolbox for skeleton-based action recognition based on PyTorch. The toolbox
supports a wide variety of skeleton action recognition algorithms, including approaches based on GCN and CNN. In
contrast to existing open-source skeleton action recognition projects that include only one or two algorithms, PYSKL
implements six different algorithms under a unified framework with both the latest and original good practices to
ease the comparison of efficacy and efficiency. We also provide an original GCN-based skeleton action recognition
model named ST-GCN++, which achieves competitive recognition performance without any complicated attention
schemes, serving as a strong baseline. Meanwhile, PYSKL supports the training and testing of nine skeleton-based
action recognition benchmarks and achieves state-of-the-art recognition performance on eight of them. To facilitate
future research on skeleton action recognition, we also provide a large number of trained models and detailed benchmark
results to give some insights. PYSKL is released at this https URL and is actively maintained. We will update this
report when we add new features or benchmarks. The current version corresponds to PYSKL v0.2.

13.4.2 Results and Models

NTU60_XSub_2D

NTU60_XSub_3D

1. The gpus indicates the number of gpus we used to get the checkpoint. If you want to use a different number of
gpus or videos per gpu, the best way is to set --auto-scale-lr when calling tools/train.py, this parameter
will auto-scale the learning rate according to the actual batch size, and the original batch size.

2. For two-stream fusion, we use joint : bone = 1 : 1. For four-stream fusion, we use joint : joint-motion : bone
: bone-motion = 2 : 1 : 2 : 1. For more details about multi-stream fusion, please refer to this tutorial.
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13.4.3 Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train STGCN++ model on NTU60-2D dataset in a deterministic option with periodic validation.

python tools/train.py configs/skeleton/stgcnpp/stgcnpp_8xb16-joint-u100-80e_ntu60-xsub-
→˓keypoint-2d.py \

--seed 0 --deterministic

For more details, you can refer to the Training part in the Training and Test Tutorial.

13.4.4 Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test STGCN++ model on NTU60-2D dataset and dump the result to a pickle file.

python tools/test.py configs/skeleton/stgcnpp/stgcnpp_8xb16-joint-u100-80e_ntu60-xsub-
→˓keypoint-2d.py \

checkpoints/SOME_CHECKPOINT.pth --dump result.pkl

For more details, you can refer to the Test part in the Training and Test Tutorial.

13.4.5 Citation

@misc{duan2022PYSKL,
url = {https://arxiv.org/abs/2205.09443},
author = {Duan, Haodong and Wang, Jiaqi and Chen, Kai and Lin, Dahua},
title = {PYSKL: Towards Good Practices for Skeleton Action Recognition},
publisher = {arXiv},
year = {2022}

}
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14.1 BMN

Bmn: Boundary-matching network for temporal action proposal generation

14.1.1 Abstract

Temporal action proposal generation is an challenging and promising task which aims to locate temporal regions in real-
world videos where action or event may occur. Current bottom-up proposal generation methods can generate proposals
with precise boundary, but cannot efficiently generate adequately reliable confidence scores for retrieving proposals.
To address these difficulties, we introduce the Boundary-Matching (BM) mechanism to evaluate confidence scores of
densely distributed proposals, which denote a proposal as a matching pair of starting and ending boundaries and com-
bine all densely distributed BM pairs into the BM confidence map. Based on BM mechanism, we propose an effective,
efficient and end-to-end proposal generation method, named Boundary-Matching Network (BMN), which generates
proposals with precise temporal boundaries as well as reliable confidence scores simultaneously. The two-branches of
BMN are jointly trained in an unified framework. We conduct experiments on two challenging datasets: THUMOS-14
and ActivityNet-1.3, where BMN shows significant performance improvement with remarkable efficiency and general-
izability. Further, combining with existing action classifier, BMN can achieve state-of-the-art temporal action detection
performance.

14.1.2 Results and Models

ActivityNet feature

1. The gpus indicates the number of gpu we used to get the checkpoint. According to the Linear Scaling Rule, you
may set the learning rate proportional to the batch size if you use different GPUs or videos per GPU, e.g., lr=0.01
for 4 GPUs x 2 video/gpu and lr=0.08 for 16 GPUs x 4 video/gpu.

2. For feature column, cuhk_mean_100 denotes the widely used cuhk activitynet feature extracted by anet2016-
cuhk.

3. We evaluate the action detection performance of BMN, using anet_cuhk_2017 submission for ActivityNet2017
Untrimmed Video Classification Track to assign label for each action proposal.

*We train BMN with the official repo, evaluate its proposal generation and action detection performance with
anet_cuhk_2017 for label assigning.

For more details on data preparation, you can refer to ActivityNet Data Preparation.
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14.1.3 Train

Train BMN model on ActivityNet features dataset.

bash tools/dist_train.sh configs/localization/bmn/bmn_400x100_2x8_9e_activitynet_feature.
→˓py 2

For more details, you can refer to the Training part in the Training and Test Tutorial.

14.1.4 Test

Test BMN on ActivityNet feature dataset.

python3 tools/test.py configs/localization/bmn/bmn_400x100_2x8_9e_activitynet_feature.
→˓py CHECKPOINT.PTH

For more details, you can refer to the Testing part in the Training and Test Tutorial.

14.1.5 Citation

@inproceedings{lin2019bmn,
title={Bmn: Boundary-matching network for temporal action proposal generation},
author={Lin, Tianwei and Liu, Xiao and Li, Xin and Ding, Errui and Wen, Shilei},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={3889--3898},
year={2019}

}

@article{zhao2017cuhk,
title={Cuhk \& ethz \& siat submission to activitynet challenge 2017},
author={Zhao, Y and Zhang, B and Wu, Z and Yang, S and Zhou, L and Yan, S and Wang, L␣

→˓and Xiong, Y and Lin, D and Qiao, Y and others},
journal={arXiv preprint arXiv:1710.08011},
volume={8},
year={2017}

}

14.2 BSN

Bsn: Boundary sensitive network for temporal action proposal generation
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14.2.1 Abstract

Temporal action proposal generation is an important yet challenging problem, since temporal proposals with rich action
content are indispensable for analysing real-world videos with long duration and high proportion irrelevant content.
This problem requires methods not only generating proposals with precise temporal boundaries, but also retrieving
proposals to cover truth action instances with high recall and high overlap using relatively fewer proposals. To address
these difficulties, we introduce an effective proposal generation method, named Boundary-Sensitive Network (BSN),
which adopts “local to global” fashion. Locally, BSN first locates temporal boundaries with high probabilities, then
directly combines these boundaries as proposals. Globally, with Boundary-Sensitive Proposal feature, BSN retrieves
proposals by evaluating the confidence of whether a proposal contains an action within its region. We conduct exper-
iments on two challenging datasets: ActivityNet-1.3 and THUMOS14, where BSN outperforms other state-of-the-art
temporal action proposal generation methods with high recall and high temporal precision. Finally, further experi-
ments demonstrate that by combining existing action classifiers, our method significantly improves the state-of-the-art
temporal action detection performance.

14.2.2 Results and Models

ActivityNet feature

1. The gpus indicates the number of gpu we used to get the checkpoint. According to the Linear Scaling Rule, you
may set the learning rate proportional to the batch size if you use different GPUs or videos per GPU, e.g., lr=0.01
for 4 GPUs x 2 video/gpu and lr=0.08 for 16 GPUs x 4 video/gpu.

2. For feature column, cuhk_mean_100 denotes the widely used cuhk activitynet feature extracted by anet2016-
cuhk.

For more details on data preparation, you can refer to ActivityNet Data Preparation.

14.2.3 Training and Test

The traing of the BSN model is three-stages. Firstly train the Temporal evaluation module (TEM):

python3 tools/train.py configs/localization/bsn/bsn_tem_1xb16-400x100-20e_activitynet-
→˓feature.py

After training use the TEM module to generate the probabilities sequence (actionness, starting, and ending) for the
training and validation dataset:

python tools/test.py configs/localization/bsn/bsn_tem_400x100_1xb16_20e_activitynet_
→˓feature.py \

work_dirs/bsn_400x100_20e_1xb16_activitynet_feature/tem_epoch_20.pth

The second step is to run the Proposal generation module (PGM) to generate Boundary-Sensitive Proposal (BSP) feature
for the training and validation dataset:

python tools/misc/bsn_proposal_generation.py configs/localization/bsn/bsn_pgm_400x100_
→˓activitynet-feature.py --mode train
python tools/misc/bsn_proposal_generation.py configs/localization/bsn/bsn_pgm_400x100_
→˓activitynet-feature.py --mode test

The last step is to train (and validate) the Proposal evaluation module (PEM):

python python tools/train.py configs/localization/bsn/bsn_pem_1xb16-400x100-20e_
→˓activitynet-feature.py
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(Optional) You can use the following command to generate a formatted proposal file, which will be fed into the action
classifier (Currently supports only SSN and P-GCN, not including TSN, I3D etc.) to get the classification result of
proposals.

python tools/data/activitynet/convert_proposal_format.py

14.2.4 Citation

@inproceedings{lin2018bsn,
title={Bsn: Boundary sensitive network for temporal action proposal generation},
author={Lin, Tianwei and Zhao, Xu and Su, Haisheng and Wang, Chongjing and Yang, Ming},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
pages={3--19},
year={2018}

}
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FIFTEEN

CONTRIBUTING TO MMACTION2

All kinds of contributions are welcome, including but not limited to the following.

• Fixes (typo, bugs)

• New features and components

• Add documentation or translate the documentation into other languages

15.1 Workflow

1. Fork and pull the latest mmaction2

2. Checkout a new branch with a meaningful name (do not use master branch for PRs)

3. Commit your changes

4. Create a PR

Note:

• If you plan to add some new features that involve large changes, it is encouraged to open an issue for discussion
first.

• If you are the author of some papers and would like to include your method to mmaction2, please contact us. We
will much appreciate your contribution.

15.2 Code style

15.2.1 Python

We adopt PEP8 as the preferred code style.

We use the following tools for linting and formatting:

• flake8: linter

• yapf: formatter

• isort: sort imports

• codespell: A Python utility to fix common misspellings in text files.
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• mdformat: Mdformat is an opinionated Markdown formatter that can be used to enforce a consistent style in
Markdown files.

• docformatter: A formatter to format docstring.

Style configurations of yapf and isort can be found in setup.cfg.

We use pre-commit hook that checks and formats for flake8, yapf, isort, trailing whitespaces, markdown
files, fixes end-of-files, sorts requirments.txt automatically on every commit. The config for a pre-commit
hook is stored in .pre-commit-config.

After you clone the repository, you will need to install initialize pre-commit hook.

pip install -U pre-commit

From the repository folder

pre-commit install

After this on every commit check code linters and formatter will be enforced.

Before you create a PR, make sure that your code lints and is formatted by yapf.

15.2.2 C++ and CUDA

We follow the Google C++ Style Guide.
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PROJECTS BASED ON MMACTION2

There are many research works and projects built on MMAction2. We list some of them as examples of how to extend
MMAction2 for your own projects. As the page might not be completed, please feel free to create a PR to update this
page.

16.1 Projects as an extension

• OTEAction2: OpenVINO Training Extensions for Action Recognition.

• PYSKL: A Toolbox Focusing on Skeleton-Based Action Recognition.

16.2 Projects of papers

There are also projects released with papers. Some of the papers are published in top-tier conferences (CVPR, ICCV,
and ECCV), the others are also highly influential. To make this list also a reference for the community to develop and
compare new video understanding algorithms, we list them following the time order of top-tier conferences. Methods
already supported and maintained by MMAction2 are not listed.

• Video Swin Transformer, CVPR 2022. [paper][github]

• Evidential Deep Learning for Open Set Action Recognition, ICCV 2021 Oral. [paper][github]

• Rethinking Self-supervised Correspondence Learning: A Video Frame-level Similarity Perspective, ICCV 2021
Oral. [paper][github]

• MGSampler: An Explainable Sampling Strategy for Video Action Recognition, ICCV 2021. [paper][github]

• MultiSports: A Multi-Person Video Dataset of Spatio-Temporally Localized Sports Actions, ICCV 2021. [paper]

• Long Short-Term Transformer for Online Action Detection, NeurIPS 2021 [paper][github]
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CHANGELOG

17.1 1.0.0rc3 (2/10/2023)

Highlights

• Support Action Recognition model UniFormer V1(ICLR’2022), UniFormer V2(Arxiv’2022).

• Support training MViT V2(CVPR’2022), and MaskFeat(CVPR’2022) fine-tuning.

New Features

• Support UniFormer V1/V2 (#2153)

• Support training MViT, and MaskFeat fine-tuning (#2186)

• Support a unified inference interface: Inferencer (#2164)

Improvements

• Support load data list from multi-backends (#2176)

Bug Fixes

• Upgrade isort to fix CI (#2198)

• Fix bug in skeleton demo (#2214)

Documentation

• Add Chinese documentation for config.md (#2188)

• Add readme for Omnisource (#2205)

17.2 1.0.0rc2 (1/10/2023)

Highlights

• Support Action Recognition model VideoMAE(NeurIPS’2022), MViT V2(CVPR’2022), C2D and skeleton-
based action recognition model STGCN++

• Support Omni-Source training on ImageNet and Kinetics datasets

• Support exporting spatial-temporal detection models to ONNX

New Features

• Support VideoMAE (#1942)

• Support MViT V2 (#2007)
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• Support C2D (#2022)

• Support AVA-Kinetics dataset (#2080)

• Support STGCN++ (#2156)

• Support exporting spatial-temporal detection models to ONNX (#2148)

• Support Omni-Source training on ImageNet and Kinetics datasets (#2143)

Improvements

• Support repeat batch data augmentation (#2170)

• Support calculating FLOPs tool powered by fvcore (#1997)

• Support Spatial-temporal detection demo (#2019)

• Add SyncBufferHook and add randomness config in train.py (#2044)

• Refactor gradcam (#2049)

• Support init_cfg in Swin and ViTMAE (#2055)

• Refactor STGCN and related pipelines (#2087)

• Refactor visualization tools (#2092)

• Update SampleFrames transform and improve most models’ performance (#1942)

• Support real-time webcam demo (#2152)

• Refactor and enhance 2s-AGCN (#2130)

• Support adjusting fps in SampleFrame (#2157)

Bug Fixes

• Fix CI upstream library dependency (#2000)

• Fix SlowOnly readme typos and results (#2006)

• Fix VideoSwin readme (#2010)

• Fix tools and mim error (#2028)

• Fix Imgaug wrapper (#2024)

• Remove useless scripts (#2032)

• Fix multi-view inference (#2045)

• Update mmcv maximum version to 1.8.0 (#2047)

• Fix torchserver dependency (#2053)

• Fix gen_ntu_rgbd_raw script (#2076)

• Update AVA-Kinetics experiment configs and results (#2099)

• Add joint.pkl and bone.pkl used in multi-stream fusion tool (#2106)

• Fix lint CI config (#2110)

• Update testing accuracy for modified SampleFrames (#2117), (#2121), (#2122), (#2124), (#2125), (#2126),
(#2129), (#2128)

• Fix timm related bug (#1976)

• Fix check_videos.py script (#2134)
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• Update CI maximum torch version to 1.13.0 (#2118)

Documentation

• Add MMYOLO description in README (#2011)

• Add v1.x introduction in README (#2023)

• Fix link in README (#2035)

• Refine some docs (#2038), (#2040), (#2058)

• Update TSN/TSM Readme (#2082)

• Add chinese document (#2083)

• Adjust document structure (#2088)

• Fix Sth-Sth and Jester dataset links (#2103)

• Fix doc link (#2131)

17.3 1.0.0rc1 (10/14/2022)

Highlights

• Support Video Swin Transformer

New Features

• Support Video Swin Transformer (#1939)

Improvements

• Add colab tutorial for 1.x (#1956)

• Support skeleton-based action recognition demo (#1920)

Bug Fixes

• Fix link in doc (#1986, #1967, #1951, #1926,#1944, #1944, #1927, #1925)

• Fix CI (#1987, #1930, #1923)

• Fix pre-commit hook config (#1971)

• Fix TIN config (#1912)

• Fix UT for BMN and BSN (#1966)

• Fix UT for Recognizer2D (#1937)

• Fix BSN and BMN configs for localization (#1913)

• Modeify ST-GCN configs (#1913)

• Fix typo in migration doc (#1931)

• Remove Onnx related tools (#1928)

• Update TANet readme (#1916, #1890)

• Update 2S-AGCN readme (#1915)

• Fix TSN configs (#1905)

• Fix configs for detection (#1903)
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• Fix typo in TIN config (#1904)

• Fix PoseC3D readme (#1899)

• Fix ST-GCN configs (#1891)

• Fix audio recognition readme (#1898)

• Fix TSM readme (#1887)

• Fix SlowOnly readme (#1889)

• Fix TRN readme (#1888)

• Fix typo in get_started doc (#1895)

17.4 1.0.0rc0 (09/01/2022)

We are excited to announce the release of MMAction2 v1.0.0rc0. MMAction2 1.0.0beta is the first version of MMAc-
tion2 1.x, a part of the OpenMMLab 2.0 projects. Built upon the new training engine.

Highlights

• New engines. MMAction2 1.x is based on MMEngine](https://github.com/open-mmlab/mmengine), which pro-
vides a general and powerful runner that allows more flexible customizations and significantly simplifies the
entrypoints of high-level interfaces.

• Unified interfaces. As a part of the OpenMMLab 2.0 projects, MMAction2 1.x unifies and refactors the inter-
faces and internal logics of train, testing, datasets, models, evaluation, and visualization. All the OpenMMLab
2.0 projects share the same design in those interfaces and logics to allow the emergence of multi-task/modality
algorithms.

• More documentation and tutorials. We add a bunch of documentation and tutorials to help users get started
more smoothly. Read it here.

Breaking Changes

In this release, we made lots of major refactoring and modifications. Please refer to the migration guide for details and
migration instructions.

17.5 0.24.0 (05/05/2022)

Highlights

• Support different seeds

New Features

• Add lateral norm in multigrid config (#1567)

• Add openpose 25 joints in graph config (#1578)

• Support MLU Backend (#1608)

Bug and Typo Fixes

• Fix local_rank (#1558)

• Fix install typo (#1571)

• Fix the inference API doc (#1580)
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• Fix zh-CN demo.md and getting_started.md (#1587)

• Remove Recommonmark (#1595)

• Fix inference with ndarray (#1603)

• Fix the log error when IterBasedRunner is used (#1606)

17.6 0.23.0 (04/01/2022)

Highlights

• Support different seeds

• Provide multi-node training & testing script

• Update error log

New Features

• Support different seeds(#1502)

• Provide multi-node training & testing script(#1521)

• Update error log(#1546)

Documentations

• Update gpus in Slowfast readme(#1497)

• Fix work_dir in multigrid config(#1498)

• Add sub bn docs(#1503)

• Add shortcycle sampler docs(#1513)

• Update Windows Declaration(#1520)

• Update the link for ST-GCN(#1544)

• Update install commands(#1549)

Bug and Typo Fixes

• Update colab tutorial install cmds(#1522)

• Fix num_iters_per_epoch in analyze_logs.py(#1530)

• Fix distributed_sampler(#1532)

• Fix cd dir error(#1545)

• Update arg names(#1548)

ModelZoo
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17.7 0.22.0 (03/05/2022)

Highlights

• Support Multigrid training strategy

• Support CPU training

• Support audio demo

• Support topk customizing in models/heads/base.py

New Features

• Support Multigrid training strategy(#1378)

• Support STGCN in demo_skeleton.py(#1391)

• Support CPU training(#1407)

• Support audio demo(#1425)

• Support topk customizing in models/heads/base.py(#1452)

Documentations

• Add OpenMMLab platform(#1393)

• Update links(#1394)

• Update readme in configs(#1404)

• Update instructions to install mmcv-full(#1426)

• Add shortcut(#1433)

• Update modelzoo(#1439)

• add video_structuralize in readme(#1455)

• Update OpenMMLab repo information(#1482)

Bug and Typo Fixes

• Update train.py(#1375)

• Fix printout bug(#1382)

• Update multi processing setting(#1395)

• Setup multi processing both in train and test(#1405)

• Fix bug in nondistributed multi-gpu training(#1406)

• Add variable fps in ava_dataset.py(#1409)

• Only support distributed training(#1414)

• Set test_mode for AVA configs(#1432)

• Support single label(#1434)

• Add check copyright(#1447)

• Support Windows CI(#1448)

• Fix wrong device of class_weight in models/losses/cross_entropy_loss.py(#1457)

• Fix bug caused by distributed(#1459)
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• Update readme(#1460)

• Fix lint caused by colab automatic upload(#1461)

• Refine CI(#1471)

• Update pre-commit(#1474)

• Add deprecation message for deploy tool(#1483)

ModelZoo

• Support slowfast_steplr(#1421)

17.8 0.21.0 (31/12/2021)

Highlights

• Support 2s-AGCN

• Support publish models in Windows

• Improve some sthv1 related models

• Support BABEL

New Features

• Support 2s-AGCN(#1248)

• Support skip postproc in ntu_pose_extraction(#1295)

• Support publish models in Windows(#1325)

• Add copyright checkhook in pre-commit-config(#1344)

Documentations

• Add MMFlow (#1273)

• Revise README.md and add projects.md (#1286)

• Add 2s-AGCN in Updates(#1289)

• Add MMFewShot(#1300)

• Add MMHuman3d(#1304)

• Update pre-commit(#1313)

• Use share menu from the theme instead(#1328)

• Update installation command(#1340)

Bug and Typo Fixes

• Update the inference part in notebooks(#1256)

• Update the map_location(#1262)

• Fix bug that start_index is not used in RawFrameDecode(#1278)

• Fix bug in init_random_seed(#1282)

• Fix bug in setup.py(#1303)

• Fix interrogate error in workflows(#1305)
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MMAction2, Release 1.0.0rc3

• Fix typo in slowfast config(#1309)

• Cancel previous runs that are not completed(#1327)

• Fix missing skip_postproc parameter(#1347)

• Update ssn.py(#1355)

• Use latest youtube-dl(#1357)

• Fix test-best(#1362)

ModelZoo

• Improve some sthv1 related models(#1306)

• Support BABEL(#1332)

17.9 0.20.0 (07/10/2021)

Highlights

• Support TorchServe

• Add video structuralize demo

• Support using 3D skeletons for skeleton-based action recognition

• Benchmark PoseC3D on UCF and HMDB

New Features

• Support TorchServe (#1212)

• Support 3D skeletons pre-processing (#1218)

• Support video structuralize demo (#1197)

Documentations

• Revise README.md and add projects.md (#1214)

• Add CN docs for Skeleton dataset, PoseC3D and ST-GCN (#1228, #1237, #1236)

• Add tutorial for custom dataset training for skeleton-based action recognition (#1234)

Bug and Typo Fixes

• Fix tutorial link (#1219)

• Fix GYM links (#1224)

ModelZoo

• Benchmark PoseC3D on UCF and HMDB (#1223)

• Add ST-GCN + 3D skeleton model for NTU60-XSub (#1236)
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MMAction2, Release 1.0.0rc3

17.10 0.19.0 (07/10/2021)

Highlights

• Support ST-GCN

• Refactor the inference API

• Add code spell check hook

New Features

• Support ST-GCN (#1123)

Improvement

• Add label maps for every dataset (#1127)

• Remove useless code MultiGroupCrop (#1180)

• Refactor Inference API (#1191)

• Add code spell check hook (#1208)

• Use docker in CI (#1159)

Documentations

• Update metafiles to new OpenMMLAB protocols (#1134)

• Switch to new doc style (#1160)

• Improve the ERROR message (#1203)

• Fix invalid URL in getting_started (#1169)

Bug and Typo Fixes

• Compatible with new MMClassification (#1139)

• Add missing runtime dependencies (#1144)

• Fix THUMOS tag proposals path (#1156)

• Fix LoadHVULabel (#1194)

• Switch the default value of persistent_workers to False (#1202)

• Fix _freeze_stages for MobileNetV2 (#1193)

• Fix resume when building rawframes (#1150)

• Fix device bug for class weight (#1188)

• Correct Arg names in extract_audio.py (#1148)

ModelZoo

• Add TSM-MobileNetV2 ported from TSM (#1163)

• Add ST-GCN for NTURGB+D-XSub-60 (#1123)
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MMAction2, Release 1.0.0rc3

17.11 0.18.0 (02/09/2021)

Improvement

• Add CopyRight (#1099)

• Support NTU Pose Extraction (#1076)

• Support Caching in RawFrameDecode (#1078)

• Add citations & Support python3.9 CI & Use fixed-version sphinx (#1125)

Documentations

• Add Descriptions of PoseC3D dataset (#1053)

Bug and Typo Fixes

• Fix SSV2 checkpoints (#1101)

• Fix CSN normalization (#1116)

• Fix typo (#1121)

• Fix new_crop_quadruple bug (#1108)

17.12 0.17.0 (03/08/2021)

Highlights

• Support PyTorch 1.9

• Support Pytorchvideo Transforms

• Support PreciseBN

New Features

• Support Pytorchvideo Transforms (#1008)

• Support PreciseBN (#1038)

Improvements

• Remove redundant augmentations in config files (#996)

• Make resource directory to hold common resource pictures (#1011)

• Remove deprecated FrameSelector (#1010)

• Support Concat Dataset (#1000)

• Add to-mp4 option to resize_videos.py (#1021)

• Add option to keep tail frames (#1050)

• Update MIM support (#1061)

• Calculate Top-K accurate and inaccurate classes (#1047)

Bug and Typo Fixes

• Fix bug in PoseC3D demo (#1009)

• Fix some problems in resize_videos.py (#1012)

• Support torch1.9 (#1015)
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MMAction2, Release 1.0.0rc3

• Remove redundant code in CI (#1046)

• Fix bug about persistent_workers (#1044)

• Support TimeSformer feature extraction (#1035)

• Fix ColorJitter (#1025)

ModelZoo

• Add TSM-R50 sthv1 models trained by PytorchVideo RandAugment and AugMix (#1008)

• Update SlowOnly SthV1 checkpoints (#1034)

• Add SlowOnly Kinetics400 checkpoints trained with Precise-BN (#1038)

• Add CSN-R50 from scratch checkpoints (#1045)

• TPN Kinetics-400 Checkpoints trained with the new ColorJitter (#1025)

Documentation

• Add Chinese translation of feature_extraction.md (#1020)

• Fix the code snippet in getting_started.md (#1023)

• Fix TANet config table (#1028)

• Add description to PoseC3D dataset (#1053)

17.13 0.16.0 (01/07/2021)

Highlights

• Support using backbone from pytorch-image-models(timm)

• Support PIMS Decoder

• Demo for skeleton-based action recognition

• Support Timesformer

New Features

• Support using backbones from pytorch-image-models(timm) for TSN (#880)

• Support torchvision transformations in preprocessing pipelines (#972)

• Demo for skeleton-based action recognition (#972)

• Support Timesformer (#839)

Improvements

• Add a tool to find invalid videos (#907, #950)

• Add an option to specify spectrogram_type (#909)

• Add json output to video demo (#906)

• Add MIM related docs (#918)

• Rename lr to scheduler (#916)

• Support --cfg-options for demos (#911)

• Support number counting for flow-wise filename template (#922)
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MMAction2, Release 1.0.0rc3

• Add Chinese tutorial (#941)

• Change ResNet3D default values (#939)

• Adjust script structure (#935)

• Add font color to args in long_video_demo (#947)

• Polish code style with Pylint (#908)

• Support PIMS Decoder (#946)

• Improve Metafiles (#956, #979, #966)

• Add links to download Kinetics400 validation (#920)

• Audit the usage of shutil.rmtree (#943)

• Polish localizer related codes(#913)

Bug and Typo Fixes

• Fix spatiotemporal detection demo (#899)

• Fix docstring for 3D inflate (#925)

• Fix bug of writing text to video with TextClip (#952)

• Fix mmcv install in CI (#977)

ModelZoo

• Add TSN with Swin Transformer backbone as an example for using pytorch-image-models(timm) backbones
(#880)

• Port CSN checkpoints from VMZ (#945)

• Release various checkpoints for UCF101, HMDB51 and Sthv1 (#938)

• Support Timesformer (#839)

• Update TSM modelzoo (#981)

17.14 0.15.0 (31/05/2021)

Highlights

• Support PoseC3D

• Support ACRN

• Support MIM

New Features

• Support PoseC3D (#786, #890)

• Support MIM (#870)

• Support ACRN and Focal Loss (#891)

• Support Jester dataset (#864)

Improvements

• Add metric_options for evaluation to docs (#873)

• Support creating a new label map based on custom classes for demos about spatio temporal demo (#879)
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MMAction2, Release 1.0.0rc3

• Improve document about AVA dataset preparation (#878)

• Provide a script to extract clip-level feature (#856)

Bug and Typo Fixes

• Fix issues about resume (#877, #878)

• Correct the key name of eval_results dictionary for metric ‘mmit_mean_average_precision’ (#885)

ModelZoo

• Support Jester dataset (#864)

• Support ACRN and Focal Loss (#891)

17.15 0.14.0 (30/04/2021)

Highlights

• Support TRN

• Support Diving48

New Features

• Support TRN (#755)

• Support Diving48 (#835)

• Support Webcam Demo for Spatio-temporal Action Detection Models (#795)

Improvements

• Add softmax option for pytorch2onnx tool (#781)

• Support TRN (#755)

• Test with onnx models and TensorRT engines (#758)

• Speed up AVA Testing (#784)

• Add self.with_neck attribute (#796)

• Update installation document (#798)

• Use a random master port (#809)

• Update AVA processing data document (#801)

• Refactor spatio-temporal augmentation (#782)

• Add QR code in CN README (#812)

• Add Alternative way to download Kinetics (#817, #822)

• Refactor Sampler (#790)

• Use EvalHook in MMCV with backward compatibility (#793)

• Use MMCV Model Registry (#843)

Bug and Typo Fixes

• Fix a bug in pytorch2onnx.py when num_classes <= 4 (#800, #824)

• Fix demo_spatiotemporal_det.py error (#803, #805)
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MMAction2, Release 1.0.0rc3

• Fix loading config bugs when resume (#820)

• Make HMDB51 annotation generation more robust (#811)

ModelZoo

• Update checkpoint for 256 height in something-V2 (#789)

• Support Diving48 (#835)

17.16 0.13.0 (31/03/2021)

Highlights

• Support LFB

• Support using backbone from MMCls/TorchVision

• Add Chinese documentation

New Features

• Support LFB (#553)

• Support using backbones from MMCls for TSN (#679)

• Support using backbones from TorchVision for TSN (#720)

• Support Mixup and Cutmix for recognizers (#681)

• Support Chinese documentation (#665, #680, #689, #701, #702, #703, #706, #716, #717, #731, #733, #735,
#736, #737, #738, #739, #740, #742, #752, #759, #761, #772, #775)

Improvements

• Add slowfast config/json/log/ckpt for training custom classes of AVA (#678)

• Set RandAugment as Imgaug default transforms (#585)

• Add --test-last & --test-best for tools/train.py to test checkpoints after training (#608)

• Add fcn_testing in TPN (#684)

• Remove redundant recall functions (#741)

• Recursively remove pretrained step for testing (#695)

• Improve demo by limiting inference fps (#668)

Bug and Typo Fixes

• Fix a bug about multi-class in VideoDataset (#723)

• Reverse key-value in anet filelist generation (#686)

• Fix flow norm cfg typo (#693)

ModelZoo

• Add LFB for AVA2.1 (#553)

• Add TSN with ResNeXt-101-32x4d backbone as an example for using MMCls backbones (#679)

• Add TSN with Densenet161 backbone as an example for using TorchVision backbones (#720)

• Add slowonly_nl_embedded_gaussian_r50_4x16x1_150e_kinetics400_rgb (#690)

• Add slowonly_nl_embedded_gaussian_r50_8x8x1_150e_kinetics400_rgb (#704)
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MMAction2, Release 1.0.0rc3

• Add slowonly_nl_kinetics_pretrained_r50_4x16x1(8x8x1)_20e_ava_rgb (#730)

17.17 0.12.0 (28/02/2021)

Highlights

• Support TSM-MobileNetV2

• Support TANet

• Support GPU Normalize

New Features

• Support TSM-MobileNetV2 (#415)

• Support flip with label mapping (#591)

• Add seed option for sampler (#642)

• Support GPU Normalize (#586)

• Support TANet (#595)

Improvements

• Training custom classes of ava dataset (#555)

• Add CN README in homepage (#592, #594)

• Support soft label for CrossEntropyLoss (#625)

• Refactor config: Specify train_cfg and test_cfg in model (#629)

• Provide an alternative way to download older kinetics annotations (#597)

• Update FAQ for

– 1). data pipeline about video and frames (#598)

– 2). how to show results (#598)

– 3). batch size setting for batchnorm (#657)

– 4). how to fix stages of backbone when finetuning models (#658)

• Modify default value of save_best (#600)

• Use BibTex rather than latex in markdown (#607)

• Add warnings of uninstalling mmdet and supplementary documents (#624)

• Support soft label for CrossEntropyLoss (#625)

Bug and Typo Fixes

• Fix value of pem_low_temporal_iou_threshold in BSN (#556)

• Fix ActivityNet download script (#601)

ModelZoo

• Add TSM-MobileNetV2 for Kinetics400 (#415)

• Add deeper SlowFast models (#605)
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17.18 0.11.0 (31/01/2021)

Highlights

• Support imgaug

• Support spatial temporal demo

• Refactor EvalHook, config structure, unittest structure

New Features

• Support imgaug for augmentations in the data pipeline (#492)

• Support setting max_testing_views for extremely large models to save GPU memory used (#511)

• Add spatial temporal demo (#547, #566)

Improvements

• Refactor EvalHook (#395)

• Refactor AVA hook (#567)

• Add repo citation (#545)

• Add dataset size of Kinetics400 (#503)

• Add lazy operation docs (#504)

• Add class_weight for CrossEntropyLoss and BCELossWithLogits (#509)

• add some explanation about the resampling in slowfast (#502)

• Modify paper title in README.md (#512)

• Add alternative ways to download Kinetics (#521)

• Add OpenMMLab projects link in README (#530)

• Change default preprocessing to shortedge to 256 (#538)

• Add config tag in dataset README (#540)

• Add solution for markdownlint installation issue (#497)

• Add dataset overview in readthedocs (#548)

• Modify the trigger mode of the warnings of missing mmdet (#583)

• Refactor config structure (#488, #572)

• Refactor unittest structure (#433)

Bug and Typo Fixes

• Fix a bug about ava dataset validation (#527)

• Fix a bug about ResNet pretrain weight initialization (#582)

• Fix a bug in CI due to MMCV index (#495)

• Remove invalid links of MiT and MMiT (#516)

• Fix frame rate bug for AVA preparation (#576)

ModelZoo
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17.19 0.10.0 (31/12/2020)

Highlights

• Support Spatio-Temporal Action Detection (AVA)

• Support precise BN

New Features

• Support precise BN (#501)

• Support Spatio-Temporal Action Detection (AVA) (#351)

• Support to return feature maps in inference_recognizer (#458)

Improvements

• Add arg stride to long_video_demo.py, to make inference faster (#468)

• Support training and testing for Spatio-Temporal Action Detection (#351)

• Fix CI due to pip upgrade (#454)

• Add markdown lint in pre-commit hook (#255)

• Speed up confusion matrix calculation (#465)

• Use title case in modelzoo statistics (#456)

• Add FAQ documents for easy troubleshooting. (#413, #420, #439)

• Support Spatio-Temporal Action Detection with context (#471)

• Add class weight for CrossEntropyLoss and BCELossWithLogits (#509)

• Add Lazy OPs docs (#504)

Bug and Typo Fixes

• Fix typo in default argument of BaseHead (#446)

• Fix potential bug about output_config overwrite (#463)

ModelZoo

• Add SlowOnly, SlowFast for AVA2.1 (#351)

17.20 0.9.0 (30/11/2020)

Highlights

• Support GradCAM utils for recognizers

• Support ResNet Audio model

New Features

• Automatically add modelzoo statistics to readthedocs (#327)

• Support GYM99 (#331, #336)

• Add AudioOnly Pathway from AVSlowFast. (#355)

• Add GradCAM utils for recognizer (#324)

• Add print config script (#345)
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• Add online motion vector decoder (#291)

Improvements

• Support PyTorch 1.7 in CI (#312)

• Support to predict different labels in a long video (#274)

• Update docs bout test crops (#359)

• Polish code format using pylint manually (#338)

• Update unittest coverage (#358, #322, #325)

• Add random seed for building filelists (#323)

• Update colab tutorial (#367)

• set default batch_size of evaluation and testing to 1 (#250)

• Rename the preparation docs to README.md (#388)

• Move docs about demo to demo/README.md (#329)

• Remove redundant code in tools/test.py (#310)

• Automatically calculate number of test clips for Recognizer2D (#359)

Bug and Typo Fixes

• Fix rename Kinetics classnames bug (#384)

• Fix a bug in BaseDataset when data_prefix is None (#314)

• Fix a bug about tmp_folder in OpenCVInit (#357)

• Fix get_thread_id when not using disk as backend (#354, #357)

• Fix the bug of HVU object num_classes from 1679 to 1678 (#307)

• Fix typo in export_model.md (#399)

• Fix OmniSource training configs (#321)

• Fix Issue #306: Bug of SampleAVAFrames (#317)

ModelZoo

• Add SlowOnly model for GYM99, both RGB and Flow (#336)

• Add auto modelzoo statistics in readthedocs (#327)

• Add TSN for HMDB51 pretrained on Kinetics400, Moments in Time and ImageNet. (#372)

17.21 v0.8.0 (31/10/2020)

Highlights

• Support OmniSource

• Support C3D

• Support video recognition with audio modality

• Support HVU

• Support X3D
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New Features

• Support AVA dataset preparation (#266)

• Support the training of video recognition dataset with multiple tag categories (#235)

• Support joint training with multiple training datasets of multiple formats, including images, untrimmed videos,
etc. (#242)

• Support to specify a start epoch to conduct evaluation (#216)

• Implement X3D models, support testing with model weights converted from SlowFast (#288)

• Support specify a start epoch to conduct evaluation (#216)

Improvements

• Set default values of ‘average_clips’ in each config file so that there is no need to set it explicitly during testing
in most cases (#232)

• Extend HVU datatools to generate individual file list for each tag category (#258)

• Support data preparation for Kinetics-600 and Kinetics-700 (#254)

• Use metric_dict to replace hardcoded arguments in evaluate function (#286)

• Add cfg-options in arguments to override some settings in the used config for convenience (#212)

• Rename the old evaluating protocol mean_average_precision as mmit_mean_average_precision since it
is only used on MMIT and is not the mAP we usually talk about. Add mean_average_precision, which is the
real mAP (#235)

• Add accurate setting (Three crop * 2 clip) and report corresponding performance for TSM model (#241)

• Add citations in each preparing_dataset.md in tools/data/dataset (#289)

• Update the performance of audio-visual fusion on Kinetics-400 (#281)

• Support data preparation of OmniSource web datasets, including GoogleImage, InsImage, InsVideo and Kinet-
icsRawVideo (#294)

• Use metric_options dict to provide metric args in evaluate (#286)

Bug Fixes

• Register FrameSelector in PIPELINES (#268)

• Fix the potential bug for default value in dataset_setting (#245)

• Fix multi-node dist test (#292)

• Fix the data preparation bug for something-something dataset (#278)

• Fix the invalid config url in slowonly README data benchmark (#249)

• Validate that the performance of models trained with videos have no significant difference comparing to the
performance of models trained with rawframes (#256)

• Correct the img_norm_cfg used by TSN-3seg-R50 UCF-101 model, improve the Top-1 accuracy by 3% (#273)

ModelZoo

• Add Baselines for Kinetics-600 and Kinetics-700, including TSN-R50-8seg and SlowOnly-R50-8x8 (#259)

• Add OmniSource benchmark on MiniKineitcs (#296)

• Add Baselines for HVU, including TSN-R18-8seg on 6 tag categories of HVU (#287)

• Add X3D models ported from SlowFast (#288)
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17.22 v0.7.0 (30/9/2020)

Highlights

• Support TPN

• Support JHMDB, UCF101-24, HVU dataset preparation

• support onnx model conversion

New Features

• Support the data pre-processing pipeline for the HVU Dataset (#277)

• Support real-time action recognition from web camera (#171)

• Support onnx (#160)

• Support UCF101-24 preparation (#219)

• Support evaluating mAP for ActivityNet with CUHK17_activitynet_pred (#176)

• Add the data pipeline for ActivityNet, including downloading videos, extracting RGB and Flow frames, finetun-
ing TSN and extracting feature (#190)

• Support JHMDB preparation (#220)

ModelZoo

• Add finetuning setting for SlowOnly (#173)

• Add TSN and SlowOnly models trained with OmniSource, which achieve 75.7% Top-1 with TSN-R50-3seg and
80.4% Top-1 with SlowOnly-R101-8x8 (#215)

Improvements

• Support demo with video url (#165)

• Support multi-batch when testing (#184)

• Add tutorial for adding a new learning rate updater (#181)

• Add config name in meta info (#183)

• Remove git hash in __version__ (#189)

• Check mmcv version (#189)

• Update url with ‘https://download.openmmlab.com’ (#208)

• Update Docker file to support PyTorch 1.6 and update install.md (#209)

• Polish readsthedocs display (#217, #229)

Bug Fixes

• Fix the bug when using OpenCV to extract only RGB frames with original shape (#184)

• Fix the bug of sthv2 num_classes from 339 to 174 (#174, #207)
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17.23 v0.6.0 (2/9/2020)

Highlights

• Support TIN, CSN, SSN, NonLocal

• Support FP16 training

New Features

• Support NonLocal module and provide ckpt in TSM and I3D (#41)

• Support SSN (#33, #37, #52, #55)

• Support CSN (#87)

• Support TIN (#53)

• Support HMDB51 dataset preparation (#60)

• Support encoding videos from frames (#84)

• Support FP16 training (#25)

• Enhance demo by supporting rawframe inference (#59), output video/gif (#72)

ModelZoo

• Update Slowfast modelzoo (#51)

• Update TSN, TSM video checkpoints (#50)

• Add data benchmark for TSN (#57)

• Add data benchmark for SlowOnly (#77)

• Add BSN/BMN performance results with feature extracted by our codebase (#99)

Improvements

• Polish data preparation codes (#70)

• Improve data preparation scripts (#58)

• Improve unittest coverage and minor fix (#62)

• Support PyTorch 1.6 in CI (#117)

• Support with_offset for rawframe dataset (#48)

• Support json annotation files (#119)

• Support multi-class in TSMHead (#104)

• Support using val_step() to validate data for each val workflow (#123)

• Use xxInit() method to get total_frames and make total_frames a required key (#90)

• Add paper introduction in model readme (#140)

• Adjust the directory structure of tools/ and rename some scripts files (#142)

Bug Fixes

• Fix configs for localization test (#67)

• Fix configs of SlowOnly by fixing lr to 8 gpus (#136)

• Fix the bug in analyze_log (#54)
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• Fix the bug of generating HMDB51 class index file (#69)

• Fix the bug of using load_checkpoint() in ResNet (#93)

• Fix the bug of --work-dir when using slurm training script (#110)

• Correct the sthv1/sthv2 rawframes filelist generate command (#71)

• CosineAnnealing typo (#47)

17.24 v0.5.0 (9/7/2020)

Highlights

• MMAction2 is released

New Features

• Support various datasets: UCF101, Kinetics-400, Something-Something V1&V2, Moments in Time, Multi-
Moments in Time, THUMOS14

• Support various action recognition methods: TSN, TSM, R(2+1)D, I3D, SlowOnly, SlowFast, Non-local

• Support various action localization methods: BSN, BMN

• Colab demo for action recognition
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CHAPTER

EIGHTEEN

FAQ

18.1 Outline

We list some common issues faced by many users and their corresponding solutions here.

• FAQ

– Outline

– Installation

– Data

– Training

– Testing

Feel free to enrich the list if you find any frequent issues and have ways to help others to solve them. If the contents
here do not cover your issue, please create an issue using the provided templates and make sure to fill in all required
information in the template.

18.2 Installation

• “No module named ‘mmcv.ops’”; “No module named ‘mmcv._ext’”

1. Uninstall existing mmcv in the environment using pip uninstall mmcv

2. Install mmcv following the installation instruction

• “OSError: MoviePy Error: creation of None failed because of the following error”

Refer to install.md

1. For Windows users, ImageMagick will not be automatically detected by MoviePy, there is a need to modify
moviepy/config_defaults.py file by providing the path to the ImageMagick binary called magick,
like IMAGEMAGICK_BINARY = "C:\\Program Files\\ImageMagick_VERSION\\magick.exe"

2. For Linux users, there is a need to modify the /etc/ImageMagick-6/policy.xml file by commenting out
<policy domain="path" rights="none" pattern="@*" /> to <!-- <policy domain="path"
rights="none" pattern="@*" /> -->, if ImageMagick is not detected by moviepy.

• “Why I got the error message ‘Please install XXCODEBASE to use XXX’ even if I have already installed
XXCODEBASE?”

You got that error message because our project failed to import a function or a class from XXCODEBASE.
You can try to run the corresponding line to see what happens. One possible reason is, for some codebases in
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OpenMMLAB, you need to install mmcv and mmengine before you install them. You could follow this tutorial
to install them.

18.3 Data

• FileNotFound like No such file or directory: xxx/xxx/img_00300.jpg

In our repo, we set start_index=1 as default value for rawframe dataset, and start_index=0 as default value
for video dataset. If users encounter FileNotFound error for the first or last frame of the data, there is a need
to check the files begin with offset 0 or 1, that is xxx_00000.jpg or xxx_00001.jpg, and then change the
start_index value of data pipeline in configs.

• How should we preprocess the videos in the dataset? Resizing them to a fix size(all videos with the same
height-width ratio) like 340x256 (1) or resizing them so that the short edges of all videos are of the same
length (256px or 320px) (2)

We have tried both preprocessing approaches and found (2) is a better solution in general, so we use (2) with
short edge length 256px as the default preprocessing setting. We benchmarked these preprocessing approaches
and you may find the results in TSN Data Benchmark and SlowOnly Data Benchmark.

• Mismatched data pipeline items lead to errors like KeyError: 'total_frames'

We have both pipeline for processing videos and frames.

For videos, We should decode them on the fly in the pipeline, so pairs like DecordInit & DecordDecode,
OpenCVInit & OpenCVDecode, PyAVInit & PyAVDecode should be used for this case like this example.

For Frames, the image has been decoded offline, so pipeline item RawFrameDecode should be used for this case
like this example.

KeyError: 'total_frames' is caused by incorrectly using RawFrameDecode step for videos, since when
the input is a video, it can not get the total_frames beforehand.

18.4 Training

• How to just use trained recognizer models for backbone pre-training?

In order to use the pre-trained model for the whole network, the new config adds the link of pre-trained models
in the load_from.

And to use backbone for pre-training, you can change pretrained value in the backbone dict of config files to
the checkpoint path / url. When training, the unexpected keys will be ignored.

• How to fix stages of backbone when finetuning a model?

You can refer to def _freeze_stages() and frozen_stages. Reminding to set find_unused_parameters
= True in config files for distributed training or testing.

Actually, users can set frozen_stages to freeze stages in backbones except C3D model, since almost all back-
bones inheriting from ResNet and ResNet3D support the inner function _freeze_stages().

• How to set memcached setting in config files?

In MMAction2, you can pass memcached kwargs to class DecordInit for video dataset or RawFrameDecode
for rawframes dataset. For more details, you can refer to [class FileClient] in MMEngine for more details.
Here is an example to use memcached for rawframes dataset:
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mc_cfg = dict(server_list_cfg='server_list_cfg', client_cfg='client_cfg', sys_path=
→˓'sys_path')

train_pipeline = [
...
dict(type='RawFrameDecode', io_backend='memcached', **mc_cfg),
...

]

• How to set load_from value in config files to finetune models?

In MMAction2, We set load_from=None as default in configs/_base_/default_runtime.py and owing
to inheritance design, users can directly change it by setting load_from in their configs.

18.5 Testing

• How to make predicted score normalized by softmax within [0, 1]?

change this in the config, make model.cls_head.average_clips = 'prob'.

• What if the model is too large and the GPU memory can not fit even only one testing sample?

By default, the 3d models are tested with 10clips x 3crops, which are 30 views in total. For extremely large
models, the GPU memory can not fit even only one testing sample (cuz there are 30 views). To handle this, you
can set max_testing_views=n in model['test_cfg'] of the config file. If so, n views will be used as a batch
during forwarding to save GPU memory used.
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