

Welcome to MMAction2’s documentation!

You can switch between Chinese and English documents in the lower-left corner of the layout.

Get Started

	Prerequisites

	Installation

User Guides

	Tutorial 1: Learn about Configs

	Tutorial 2: Prepare Datasets

	Tutorial 3: Inference with existing models

	Tutorial 4: Training and Test

Useful Tools

	Other Useful Tools

	Visualization Tools

Migration

	Migration from MMAction2 0.x

Model Zoo

	Overview

	Action Recognition Models

	Spatio Temporal Action Detection Models

	Skeleton-based Action Recognition Models

	Action Localization Models

Notes

	Contributing to MMAction2

	Projects based on MMAction2

	Changelog

	FAQ

Switch Language

	English

	简体中文

Indices and tables

	Index

	Search Page

Prerequisites

In this section we demonstrate how to prepare an environment with PyTorch.

MMAction2 works on Linux, Windows and macOS. It requires Python 3.7+, CUDA 9.2+ and PyTorch 1.6+.

Note

If you are experienced with PyTorch and have already installed it, just skip this part and jump to the next section. Otherwise, you can follow these steps for the preparation.

Step 1. Download and install Miniconda from the official website [https://docs.conda.io/en/latest/miniconda.html].

Step 2. Create a conda environment and activate it.

conda create --name openmmlab python=3.8 -y
conda activate openmmlab

Step 3. Install PyTorch following official instructions [https://pytorch.org/get-started/locally/], e.g.

On GPU platforms:

conda install pytorch torchvision -c pytorch

Warning

This command will automatically install the latest version PyTorch and cudatoolkit, please check whether they match your environment.

On CPU platforms:

conda install pytorch torchvision cpuonly -c pytorch

Installation

We recommend that users follow our best practices to install MMAction2. However, the whole process is highly customizable. See Customize Installation section for more information.

Best Practices

Step 1. Install MMEngine [https://github.com/open-mmlab/mmengine] and MMCV [https://github.com/open-mmlab/mmcv] using MIM [https://github.com/open-mmlab/mim].

pip install -U openmim
mim install mmengine 'mmcv>=2.0.0rc1'

Note that some of the demo scripts in MMAction2 require MMDetection [https://github.com/open-mmlab/mmdetection] (mmdet) for human detection, and MMPose [https://github.com/open-mmlab/mmpose] for pose estimation. If you want to run these demo scripts, you can easily install mmdet and mmpose as dependencies by running:

mim install "mmdet>=3.0.0rc5"
mim install "mmpose>=1.0.0rc0"

Step 2. Install MMAction2.

According to your needs, we support two install modes:

	Install from source (Recommended): You want to develop your own action recognition task or new features on MMAction2 framework. For example, adding new dataset or new models. Thus, you can use all tools we provided.

	Install as a Python package: You just want to call MMAction2’s APIs or import MMAction2’s modules in your project.

Install from source

In this case, install mmaction2 from source:

git clone https://github.com/open-mmlab/mmaction2.git
cd mmaction2
git checkout 1.x
pip install -v -e .
"-v" means verbose, or more output
"-e" means installing a project in editable mode,
thus any local modifications made to the code will take effect without re-installation.

Optionally, if you want to contribute to MMAction2 or experience experimental functions, please checkout to the dev-1.x branch:

git checkout dev-1.x

Install as a Python package

Just install with pip.

pip install "mmaction2>=1.0rc0"

Verify the installation

To verify whether MMAction2 is installed correctly, we provide some sample codes to run an inference demo.

Step 1. Download the config and checkpoint files.

mim download mmaction2 --config tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb --dest .

Step 2. Verify the inference demo.

Option (a). If you install mmaction2 from source, you can run the following command:

The demo.mp4 and label_map_k400.txt are both from Kinetics-400
python demo/demo.py tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb.py \
 tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb_20220906-2692d16c.pth \
 demo/demo.mp4 tools/data/kinetics/label_map_k400.txt

You will see the top-5 labels with corresponding scores in your terminal.

Option (b). If you install mmaction2 as a python package, you can run the following codes in your python interpreter, which will do the similar verification:

from operator import itemgetter
from mmaction.apis import init_recognizer, inference_recognizer

config_file = 'tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb.py'
checkpoint_file = 'tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb_20220906-2692d16c.pth'
video_file = 'demo/demo.mp4'
label_file = 'tools/data/kinetics/label_map_k400.txt'
model = init_recognizer(config_file, checkpoint_file, device='cpu') # or device='cuda:0'
pred_result = inference_recognizer(model, video_file)

pred_scores = pred_result.pred_scores.item.tolist()
score_tuples = tuple(zip(range(len(pred_scores)), pred_scores))
score_sorted = sorted(score_tuples, key=itemgetter(1), reverse=True)
top5_label = score_sorted[:5]

labels = open(label_file).readlines()
labels = [x.strip() for x in labels]
results = [(labels[k[0]], k[1]) for k in top5_label]

print('The top-5 labels with corresponding scores are:')
for result in results:
 print(f'{result[0]}: ', result[1])

Customize Installation

CUDA versions

When installing PyTorch, you may need to specify the version of CUDA. If you are
not clear on which to choose, follow our recommendations:

	For Ampere-based NVIDIA GPUs, such as GeForce 30 series and NVIDIA A100, CUDA 11 is a must.

	For older NVIDIA GPUs, CUDA 11 is backward compatible, but CUDA 10.2 offers better compatibility and is more lightweight.

Please make sure the GPU driver satisfies the minimum version requirements. See this table [https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions] for more information.

Note

Installing CUDA runtime libraries is enough if you follow our best practices,
because no CUDA code will be compiled locally. However if you hope to compile
MMCV from source or develop other CUDA operators, you need to install the
complete CUDA toolkit from NVIDIA’s website [https://developer.nvidia.com/cuda-downloads],
and its version should match the CUDA version of PyTorch. i.e., the specified
version of cudatoolkit in conda install command.

Install MMCV without MIM

MMCV contains C++ and CUDA extensions, so it depends on PyTorch in a complex
way. MIM solves such dependencies automatically and makes the installation
easier. However, it is not a must.

To install MMCV with pip instead of MIM, please follow
MMCV installation guides [https://mmcv.readthedocs.io/en/2.x/get_started/installation.html].
This requires manually specifying a find-url based on PyTorch version and its CUDA version.

For example, the following command install mmcv built for PyTorch 1.10.x and CUDA 11.3.

pip install 'mmcv>=2.0.0rc1' -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html

Install on CPU-only platforms

MMAction2 can be built for CPU-only environment. In CPU mode you can train, test or inference a model.

Some functionalities are gone in this mode, usually GPU-compiled ops. But don’t
worry, almost all models in MMAction2 don’t depend on these ops.

Using MMAction2 with Docker

We provide a Dockerfile [https://github.com/open-mmlab/mmaction2/blob/1.x/docker/Dockerfile]
to build an image. Ensure that your docker version [https://docs.docker.com/engine/install/] >=19.03.

build an image with PyTorch 1.6.0, CUDA 10.1, CUDNN 7.
If you prefer other versions, just modified the Dockerfile
docker build -f ./docker/Dockerfile --rm -t mmaction2 .

Run it with

docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmaction2/data mmaction2

Tutorial 1: Learn about Configs

We use python files as configs, incorporate modular and inheritance design into our config system, which is convenient to conduct various experiments.
You can find all the provided configs under $MMAction2/configs. If you wish to inspect the config file,
you may run python tools/analysis_tools/print_config.py /PATH/TO/CONFIG to see the complete config.

	Modify config through script arguments

	Config File Structure

	Config File Naming Convention

	Config System for Action Recognition

	Config System for Spatio-Temporal Action Detection

	Config System for Action localization

Modify config through script arguments

When submitting jobs using tools/train.py or tools/test.py, you may specify --cfg-options to in-place modify the config.

	Update config keys of dict.

The config options can be specified following the order of the dict keys in the original config.
For example, --cfg-options model.backbone.norm_eval=False changes the all BN modules in model backbones to train mode.

	Update keys inside a list of configs.

Some config dicts are composed as a list in your config. For example, the training pipeline train_pipeline is normally a list
e.g. [dict(type='SampleFrames'), ...]. If you want to change 'SampleFrames' to 'DenseSampleFrames' in the pipeline,
you may specify --cfg-options train_pipeline.0.type=DenseSampleFrames.

	Update values of list/tuples.

If the value to be updated is a list or a tuple. For example, the config file normally sets model.data_preprocessor.mean=[123.675, 116.28, 103.53]. If you want to
change this key, you may specify --cfg-options model.data_preprocessor.mean="[128,128,128]". Note that the quotation mark ” is necessary to support list/tuple data types.

Config File Structure

There are 3 basic component types under configs/_base_, models, schedules, default_runtime.
Many methods could be easily constructed with one of each like TSN, I3D, SlowOnly, etc.
The configs that are composed by components from _base_ are called primitive.

For all configs under the same folder, it is recommended to have only one primitive config. All other configs should inherit from the primitive config. In this way, the maximum of inheritance level is 3.

For easy understanding, we recommend contributors to inherit from exiting methods.
For example, if some modification is made based on TSN, users may first inherit the basic TSN structure by specifying _base_ = ../tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py, then modify the necessary fields in the config files.

If you are building an entirely new method that does not share the structure with any of the existing methods, you may create a folder under configs/TASK.

Please refer to mmengine [https://mmengine.readthedocs.io/en/latest/tutorials/config.html] for detailed documentation.

Config File Naming Convention

We follow the style below to name config files. Contributors are advised to follow the same style. The config file names are divided into several parts. Logically, different parts are concatenated by underscores '_', and settings in the same part are concatenated by dashes '-'.

{algorithm info}_{module info}_{training info}_{data info}.py

{xxx} is required field and [yyy] is optional.

	{algorithm info}:

	{model}: model type, e.g. tsn, i3d, swin, vit, etc.

	[model setting]: specific setting for some models, e.g. base, p16, w877, etc.

	{module info}:

	[pretained info]: pretrained information, e.g. kinetics400-pretrained, in1k-pre, etc.

	{backbone}: backbone type. e.g. r50 (ResNet-50), etc.

	[backbone setting]: specific setting for some backbones, e.g. nl-dot-product, bnfrozen, nopool, etc.

	{training info}:

	{gpu x batch_per_gpu]}: GPUs and samples per GPU.

	{pipeline setting}: frame sample setting, e.g. dense, {clip_len}x{frame_interval}x{num_clips}, u48, etc.

	{schedule}: training schedule, e.g. coslr-20e.

	{data info}:

	{dataset}: dataset name, e.g. kinetics400, mmit, etc.

	{modality}: data modality, e.g. rgb, flow, keypoint-2d, etc.

Config System for Action Recognition

We incorporate modular design into our config system,
which is convenient to conduct various experiments.

	An Example of TSN

To help the users have a basic idea of a complete config structure and the modules in an action recognition system,
we make brief comments on the config of TSN as the following.
For more detailed usage and alternative for per parameter in each module, please refer to the API documentation.

model settings
model = dict(# Config of the model
 type='Recognizer2D', # Class name of the recognizer
 backbone=dict(# Dict for backbone
 type='ResNet', # Name of the backbone
 pretrained='torchvision://resnet50', # The url/site of the pretrained model
 depth=50, # Depth of ResNet model
 norm_eval=False), # Whether to set BN layers to eval mode when training
 cls_head=dict(# Dict for classification head
 type='TSNHead', # Name of classification head
 num_classes=400, # Number of classes to be classified.
 in_channels=2048, # The input channels of classification head.
 spatial_type='avg', # Type of pooling in spatial dimension
 consensus=dict(type='AvgConsensus', dim=1), # Config of consensus module
 dropout_ratio=0.4, # Probability in dropout layer
 init_std=0.01, # Std value for linear layer initiation
 average_clips='prob'), # Method to average multiple clip results
 data_preprocessor=dict(# Dict for data preprocessor
 type='ActionDataPreprocessor', # Name of data preprocessor
 mean=[123.675, 116.28, 103.53], # Mean values of different channels to normalize
 std=[58.395, 57.12, 57.375], # Std values of different channels to normalize
 format_shape='NCHW'), # Final image shape format
 # model training and testing settings
 train_cfg=None, # Config of training hyperparameters for TSN
 test_cfg=None) # Config for testing hyperparameters for TSN.

dataset settings
dataset_type = 'RawframeDataset' # Type of dataset for training, validation and testing
data_root = 'data/kinetics400/rawframes_train/' # Root path to data for training
data_root_val = 'data/kinetics400/rawframes_val/' # Root path to data for validation and testing
ann_file_train = 'data/kinetics400/kinetics400_train_list_rawframes.txt' # Path to the annotation file for training
ann_file_val = 'data/kinetics400/kinetics400_val_list_rawframes.txt' # Path to the annotation file for validation
ann_file_test = 'data/kinetics400/kinetics400_val_list_rawframes.txt' # Path to the annotation file for testing

train_pipeline = [# Training data processing pipeline
 dict(# Config of SampleFrames
 type='SampleFrames', # Sample frames pipeline, sampling frames from video
 clip_len=1, # Frames of each sampled output clip
 frame_interval=1, # Temporal interval of adjacent sampled frames
 num_clips=3), # Number of clips to be sampled
 dict(# Config of RawFrameDecode
 type='RawFrameDecode'), # Load and decode Frames pipeline, picking raw frames with given indices
 dict(# Config of Resize
 type='Resize', # Resize pipeline
 scale=(-1, 256)), # The scale to resize images
 dict(# Config of MultiScaleCrop
 type='MultiScaleCrop', # Multi scale crop pipeline, cropping images with a list of randomly selected scales
 input_size=224, # Input size of the network
 scales=(1, 0.875, 0.75, 0.66), # Scales of width and height to be selected
 random_crop=False, # Whether to randomly sample cropping bbox
 max_wh_scale_gap=1), # Maximum gap of w and h scale levels
 dict(# Config of Resize
 type='Resize', # Resize pipeline
 scale=(224, 224), # The scale to resize images
 keep_ratio=False), # Whether to resize with changing the aspect ratio
 dict(# Config of Flip
 type='Flip', # Flip Pipeline
 flip_ratio=0.5), # Probability of implementing flip
 dict(# Config of FormatShape
 type='FormatShape', # Format shape pipeline, Format final image shape to the given input_format
 input_format='NCHW'), # Final image shape format
 dict(type='PackActionInputs') # Config of PackActionInputs
]
val_pipeline = [# Validation data processing pipeline
 dict(# Config of SampleFrames
 type='SampleFrames', # Sample frames pipeline, sampling frames from video
 clip_len=1, # Frames of each sampled output clip
 frame_interval=1, # Temporal interval of adjacent sampled frames
 num_clips=3, # Number of clips to be sampled
 test_mode=True), # Whether to set test mode in sampling
 dict(# Config of RawFrameDecode
 type='RawFrameDecode'), # Load and decode Frames pipeline, picking raw frames with given indices
 dict(# Config of Resize
 type='Resize', # Resize pipeline
 scale=(-1, 256)), # The scale to resize images
 dict(# Config of CenterCrop
 type='CenterCrop', # Center crop pipeline, cropping the center area from images
 crop_size=224), # The size to crop images
 dict(# Config of Flip
 type='Flip', # Flip pipeline
 flip_ratio=0), # Probability of implementing flip
 dict(# Config of FormatShape
 type='FormatShape', # Format shape pipeline, Format final image shape to the given input_format
 input_format='NCHW'), # Final image shape format
 dict(type='PackActionInputs') # Config of PackActionInputs
]
test_pipeline = [# Testing data processing pipeline
 dict(# Config of SampleFrames
 type='SampleFrames', # Sample frames pipeline, sampling frames from video
 clip_len=1, # Frames of each sampled output clip
 frame_interval=1, # Temporal interval of adjacent sampled frames
 num_clips=25, # Number of clips to be sampled
 test_mode=True), # Whether to set test mode in sampling
 dict(# Config of RawFrameDecode
 type='RawFrameDecode'), # Load and decode Frames pipeline, picking raw frames with given indices
 dict(# Config of Resize
 type='Resize', # Resize pipeline
 scale=(-1, 256)), # The scale to resize images
 dict(# Config of TenCrop
 type='TenCrop', # Ten crop pipeline, cropping ten area from images
 crop_size=224), # The size to crop images
 dict(# Config of Flip
 type='Flip', # Flip pipeline
 flip_ratio=0), # Probability of implementing flip
 dict(# Config of FormatShape
 type='FormatShape', # Format shape pipeline, Format final image shape to the given input_format
 input_format='NCHW'), # Final image shape format
 dict(type='PackActionInputs') # Config of PackActionInputs
]

train_dataloader = dict(# Config of train dataloader
 batch_size=32, # Batch size of each single GPU during training
 num_workers=8, # Workers to pre-fetch data for each single GPU during training
 persistent_workers=True, # If `True`, the dataloader will not shut down the worker processes after an epoch end, which can accelerate training speed
 sampler=dict(
 type='DefaultSampler', # DefaultSampler which supports both distributed and non-distributed training. Refer to https://github.com/open-mmlab/mmengine/blob/main/mmengine/dataset/sampler.py
 shuffle=True), # Randomly shuffle the training data in each epoch
 dataset=dict(# Config of train dataset
 type=dataset_type,
 ann_file=ann_file_train, # Path of annotation file
 data_prefix=dict(img=data_root), # Prefix of frame path
 pipeline=train_pipeline))
val_dataloader = dict(# Config of validation dataloader
 batch_size=1, # Batch size of each single GPU during validation
 num_workers=8, # Workers to pre-fetch data for each single GPU during validation
 persistent_workers=True, # If `True`, the dataloader will not shut down the worker processes after an epoch end
 sampler=dict(
 type='DefaultSampler',
 shuffle=False), # Not shuffle during validation and testing
 dataset=dict(# Config of validation dataset
 type=dataset_type,
 ann_file=ann_file_val, # Path of annotation file
 data_prefix=dict(img=data_root_val), # Prefix of frame path
 pipeline=val_pipeline,
 test_mode=True))
test_dataloader = dict(# Config of test dataloader
 batch_size=32, # Batch size of each single GPU during testing
 num_workers=8, # Workers to pre-fetch data for each single GPU during testing
 persistent_workers=True, # If `True`, the dataloader will not shut down the worker processes after an epoch end
 sampler=dict(
 type='DefaultSampler',
 shuffle=False), # Not shuffle during validation and testing
 dataset=dict(# Config of test dataset
 type=dataset_type,
 ann_file=ann_file_val, # Path of annotation file
 data_prefix=dict(img=data_root_val), # Prefix of frame path
 pipeline=test_pipeline,
 test_mode=True))

evaluation settings
val_evaluator = dict(type='AccMetric') # Config of validation evaluator
test_evaluator = val_evaluator # Config of testing evaluator

train_cfg = dict(# Config of training loop
 type='EpochBasedTrainLoop', # Name of training loop
 max_epochs=100, # Total training epochs
 val_begin=1, # The epoch that begins validating
 val_interval=1) # Validation interval
val_cfg = dict(# Config of validation loop
 type='ValLoop') # Name of validation loop
test_cfg = dict(# Config of testing loop
 type='TestLoop') # Name of testing loop

learning policy
param_scheduler = [# Parameter scheduler for updating optimizer parameters, support dict or list
 dict(type='MultiStepLR', # Decays the learning rate once the number of epoch reaches one of the milestones
 begin=0, # Step at which to start updating the learning rate
 end=100, # Step at which to stop updating the learning rate
 by_epoch=True, # Whether the scheduled learning rate is updated by epochs
 milestones=[40, 80], # Steps to decay the learning rate
 gamma=0.1)] # Multiplicative factor of learning rate decay

optimizer
optim_wrapper = dict(# Config of optimizer wrapper
 type='OptimWrapper', # Name of optimizer wrapper, switch to AmpOptimWrapper to enable mixed precision training
 optimizer=dict(# Config of optimizer. Support all kinds of optimizers in PyTorch. Refer to https://pytorch.org/docs/stable/optim.html#algorithms
 type='SGD', # Name of optimizer
 lr=0.01, # Learning rate
 momentum=0.9, # Momentum factor
 weight_decay=0.0001), # Weight decay
 clip_grad=dict(max_norm=40, norm_type=2)) # Config of gradient clip

runtime settings
default_scope = 'mmaction' # The default registry scope to find modules. Refer to https://mmengine.readthedocs.io/en/latest/tutorials/registry.html
default_hooks = dict(# Hooks to execute default actions like updating model parameters and saving checkpoints.
 runtime_info=dict(type='RuntimeInfoHook'), # The hook to updates runtime information into message hub
 timer=dict(type='IterTimerHook'), # The logger used to record time spent during iteration
 logger=dict(
 type='LoggerHook', # The logger used to record logs during training/validation/testing phase
 interval=20, # Interval to print the log
 ignore_last=False), # Ignore the log of last iterations in each epoch
 param_scheduler=dict(type='ParamSchedulerHook'), # The hook to update some hyper-parameters in optimizer
 checkpoint=dict(
 type='CheckpointHook', # The hook to save checkpoints periodically
 interval=3, # The saving period
 save_best='auto', # Specified metric to mearsure the best checkpoint during evaluation
 max_keep_ckpts=3), # The maximum checkpoints to keep
 sampler_seed=dict(type='DistSamplerSeedHook'), # Data-loading sampler for distributed training
 sync_buffers=dict(type='SyncBuffersHook')) # Synchronize model buffers at the end of each epoch
env_cfg = dict(# Dict for setting environment
 cudnn_benchmark=False, # Whether to enable cudnn benchmark
 mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), # Parameters to setup multiprocessing
 dist_cfg=dict(backend='nccl')) # Parameters to setup distributed environment, the port can also be set

log_processor = dict(
 type='LogProcessor', # Log processor used to format log information
 window_size=20, # Default smooth interval
 by_epoch=True) # Whether to format logs with epoch type
vis_backends = [# List of visualization backends
 dict(type='LocalVisBackend')] # Local visualization backend
visualizer = dict(# Config of visualizer
 type='ActionVisualizer', # Name of visualizer
 vis_backends=vis_backends)
log_level = 'INFO' # The level of logging
load_from = None # Load model checkpoint as a pre-trained model from a given path. This will not resume training.
resume = False # Whether to resume from the checkpoint defined in `load_from`. If `load_from` is None, it will resume the latest checkpoint in the `work_dir`.

Config System for Spatio-Temporal Action Detection

We incorporate modular design into our config system, which is convenient to conduct various experiments.

	An Example of FastRCNN

To help the users have a basic idea of a complete config structure and the modules in a spatio-temporal action detection system,
we make brief comments on the config of FastRCNN as the following.
For more detailed usage and alternative for per parameter in each module, please refer to the API documentation.

model setting
model = dict(# Config of the model
 type='FastRCNN', # Class name of the detector
 scope='mmdet', # The scope of current config
 backbone=dict(# Dict for backbone
 type='ResNet3dSlowOnly', # Name of the backbone
 depth=50, # Depth of ResNet model
 pretrained=None, # The url/site of the pretrained model
 pretrained2d=False, # If the pretrained model is 2D
 lateral=False, # If the backbone is with lateral connections
 num_stages=4, # Stages of ResNet model
 conv1_kernel=(1, 7, 7), # Conv1 kernel size
 conv1_stride_t=1, # Conv1 temporal stride
 pool1_stride_t=1, # Pool1 temporal stride
 spatial_strides=(1, 2, 2, 1)), # The spatial stride for each ResNet stage
 roi_head=dict(# Dict for roi_head
 type='AVARoIHead', # Name of the roi_head
 bbox_roi_extractor=dict(# Dict for bbox_roi_extractor
 type='SingleRoIExtractor3D', # Name of the bbox_roi_extractor
 roi_layer_type='RoIAlign', # Type of the RoI op
 output_size=8, # Output feature size of the RoI op
 with_temporal_pool=True), # If temporal dim is pooled
 bbox_head=dict(# Dict for bbox_head
 type='BBoxHeadAVA', # Name of the bbox_head
 in_channels=2048, # Number of channels of the input feature
 num_classes=81, # Number of action classes + 1
 multilabel=True, # If the dataset is multilabel
 dropout_ratio=0.5), # The dropout ratio used
 data_preprocessor=dict(# Dict for data preprocessor
 type='ActionDataPreprocessor', # Name of data preprocessor
 mean=[123.675, 116.28, 103.53], # Mean values of different channels to normalize
 std=[58.395, 57.12, 57.375], # Std values of different channels to normalize
 format_shape='NCHW')), # Final image shape format
 # model training and testing settings
 train_cfg=dict(# Training config of FastRCNN
 rcnn=dict(# Dict for rcnn training config
 assigner=dict(# Dict for assigner
 type='MaxIoUAssignerAVA', # Name of the assigner
 pos_iou_thr=0.9, # IoU threshold for positive examples, > pos_iou_thr -> positive
 neg_iou_thr=0.9, # IoU threshold for negative examples, < neg_iou_thr -> negative
 min_pos_iou=0.9), # Minimum acceptable IoU for positive examples
 sampler=dict(# Dict for sample
 type='RandomSampler', # Name of the sampler
 num=32, # Batch Size of the sampler
 pos_fraction=1, # Positive bbox fraction of the sampler
 neg_pos_ub=-1, # Upper bound of the ratio of num negative to num positive
 add_gt_as_proposals=True), # Add gt bboxes as proposals
 pos_weight=1.0)), # Loss weight of positive examples
 test_cfg=dict(rcnn=None)) # Testing config of FastRCNN

dataset settings
dataset_type = 'AVADataset' # Type of dataset for training, validation and testing
data_root = 'data/ava/rawframes' # Root path to data
anno_root = 'data/ava/annotations' # Root path to annotations

ann_file_train = f'{anno_root}/ava_train_v2.1.csv' # Path to the annotation file for training
ann_file_val = f'{anno_root}/ava_val_v2.1.csv' # Path to the annotation file for validation

exclude_file_train = f'{anno_root}/ava_train_excluded_timestamps_v2.1.csv' # Path to the exclude annotation file for training
exclude_file_val = f'{anno_root}/ava_val_excluded_timestamps_v2.1.csv' # Path to the exclude annotation file for validation

label_file = f'{anno_root}/ava_action_list_v2.1_for_activitynet_2018.pbtxt' # Path to the label file

proposal_file_train = f'{anno_root}/ava_dense_proposals_train.FAIR.recall_93.9.pkl' # Path to the human detection proposals for training examples
proposal_file_val = f'{anno_root}/ava_dense_proposals_val.FAIR.recall_93.9.pkl' # Path to the human detection proposals for validation examples

train_pipeline = [# Training data processing pipeline
 dict(# Config of SampleFrames
 type='AVASampleFrames', # Sample frames pipeline, sampling frames from video
 clip_len=4, # Frames of each sampled output clip
 frame_interval=16), # Temporal interval of adjacent sampled frames
 dict(# Config of RawFrameDecode
 type='RawFrameDecode'), # Load and decode Frames pipeline, picking raw frames with given indices
 dict(# Config of RandomRescale
 type='RandomRescale', # Randomly rescale the shortedge by a given range
 scale_range=(256, 320)), # The shortedge size range of RandomRescale
 dict(# Config of RandomCrop
 type='RandomCrop', # Randomly crop a patch with the given size
 size=256), # The size of the cropped patch
 dict(# Config of Flip
 type='Flip', # Flip Pipeline
 flip_ratio=0.5), # Probability of implementing flip
 dict(# Config of FormatShape
 type='FormatShape', # Format shape pipeline, Format final image shape to the given input_format
 input_format='NCTHW', # Final image shape format
 collapse=True), # Collapse the dim N if N == 1
 dict(type='PackActionInputs') # Pack input data
]

val_pipeline = [# Validation data processing pipeline
 dict(# Config of SampleFrames
 type='AVASampleFrames', # Sample frames pipeline, sampling frames from video
 clip_len=4, # Frames of each sampled output clip
 frame_interval=16), # Temporal interval of adjacent sampled frames
 dict(# Config of RawFrameDecode
 type='RawFrameDecode'), # Load and decode Frames pipeline, picking raw frames with given indices
 dict(# Config of Resize
 type='Resize', # Resize pipeline
 scale=(-1, 256)), # The scale to resize images
 dict(# Config of FormatShape
 type='FormatShape', # Format shape pipeline, Format final image shape to the given input_format
 input_format='NCTHW', # Final image shape format
 collapse=True), # Collapse the dim N if N == 1
 dict(type='PackActionInputs') # Pack input data
]

train_dataloader = dict(# Config of train dataloader
 batch_size=32, # Batch size of each single GPU during training
 num_workers=8, # Workers to pre-fetch data for each single GPU during training
 persistent_workers=True, # If `True`, the dataloader will not shut down the worker processes after an epoch end, which can accelerate training speed
 sampler=dict(
 type='DefaultSampler', # DefaultSampler which supports both distributed and non-distributed training. Refer to https://github.com/open-mmlab/mmengine/blob/main/mmengine/dataset/sampler.py
 shuffle=True), # Randomly shuffle the training data in each epoch
 dataset=dict(# Config of train dataset
 type=dataset_type,
 ann_file=ann_file_train, # Path of annotation file
 exclude_file=exclude_file_train, # Path of exclude annotation file
 label_file=label_file, # Path of label file
 data_prefix=dict(img=data_root), # Prefix of frame path
 proposal_file=proposal_file_train, # Path of human detection proposals
 pipeline=train_pipeline))
val_dataloader = dict(# Config of validation dataloader
 batch_size=1, # Batch size of each single GPU during evaluation
 num_workers=8, # Workers to pre-fetch data for each single GPU during evaluation
 persistent_workers=True, # If `True`, the dataloader will not shut down the worker processes after an epoch end
 sampler=dict(
 type='DefaultSampler',
 shuffle=False), # Not shuffle during validation and testing
 dataset=dict(# Config of validation dataset
 type=dataset_type,
 ann_file=ann_file_val, # Path of annotation file
 exclude_file=exclude_file_val, # Path of exclude annotation file
 label_file=label_file, # Path of label file
 data_prefix=dict(img=data_root_val), # Prefix of frame path
 proposal_file=proposal_file_val, # Path of human detection proposals
 pipeline=val_pipeline,
 test_mode=True))
test_dataloader = val_dataloader # Config of testing dataloader

evaluation settings
val_evaluator = dict(# Config of validation evaluator
 type='AVAMetric',
 ann_file=ann_file_val,
 label_file=label_file,
 exclude_file=exclude_file_val)
test_evaluator = val_evaluator # Config of testing evaluator

train_cfg = dict(# Config of training loop
 type='EpochBasedTrainLoop', # Name of training loop
 max_epochs=20, # Total training epochs
 val_begin=1, # The epoch that begins validating
 val_interval=1) # Validation interval
val_cfg = dict(# Config of validation loop
 type='ValLoop') # Name of validation loop
test_cfg = dict(# Config of testing loop
 type='TestLoop') # Name of testing loop

learning policy
param_scheduler = [# Parameter scheduler for updating optimizer parameters, support dict or list
 dict(type='LinearLR', # Decays the learning rate of each parameter group by linearly changing small multiplicative factor
 start_factor=0.1, # The number we multiply learning rate in the first epoch
 by_epoch=True, # Whether the scheduled learning rate is updated by epochs
 	 begin=0, # Step at which to start updating the learning rate
 	 end=5), # Step at which to stop updating the learning rate
 dict(type='MultiStepLR', # Decays the learning rate once the number of epoch reaches one of the milestones
 begin=0, # Step at which to start updating the learning rate
 end=20, # Step at which to stop updating the learning rate
 by_epoch=True, # Whether the scheduled learning rate is updated by epochs
 milestones=[10, 15], # Steps to decay the learning rate
 gamma=0.1)] # Multiplicative factor of learning rate decay

optimizer
optim_wrapper = dict(# Config of optimizer wrapper
 type='OptimWrapper', # Name of optimizer wrapper, switch to AmpOptimWrapper to enable mixed precision training
 optimizer=dict(# Config of optimizer. Support all kinds of optimizers in PyTorch. Refer to https://pytorch.org/docs/stable/optim.html#algorithms
 type='SGD', # Name of optimizer
 lr=0.2, # Learning rate
 momentum=0.9, # Momentum factor
 weight_decay=0.0001), # Weight decay
 clip_grad=dict(max_norm=40, norm_type=2)) # Config of gradient clip

runtime settings
default_scope = 'mmaction' # The default registry scope to find modules. Refer to https://mmengine.readthedocs.io/en/latest/tutorials/registry.html
default_hooks = dict(# Hooks to execute default actions like updating model parameters and saving checkpoints.
 runtime_info=dict(type='RuntimeInfoHook'), # The hook to updates runtime information into message hub
 timer=dict(type='IterTimerHook'), # The logger used to record time spent during iteration
 logger=dict(
 type='LoggerHook', # The logger used to record logs during training/validation/testing phase
 interval=20, # Interval to print the log
 ignore_last=False), # Ignore the log of last iterations in each epoch
 param_scheduler=dict(type='ParamSchedulerHook'), # The hook to update some hyper-parameters in optimizer
 checkpoint=dict(
 type='CheckpointHook', # The hook to save checkpoints periodically
 interval=3, # The saving period
 save_best='auto', # Specified metric to mearsure the best checkpoint during evaluation
 max_keep_ckpts=3), # The maximum checkpoints to keep
 sampler_seed=dict(type='DistSamplerSeedHook'), # Data-loading sampler for distributed training
 sync_buffers=dict(type='SyncBuffersHook')) # Synchronize model buffers at the end of each epoch
env_cfg = dict(# Dict for setting environment
 cudnn_benchmark=False, # Whether to enable cudnn benchmark
 mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), # Parameters to setup multiprocessing
 dist_cfg=dict(backend='nccl')) # Parameters to setup distributed environment, the port can also be set

log_processor = dict(
 type='LogProcessor', # Log processor used to format log information
 window_size=20, # Default smooth interval
 by_epoch=True) # Whether to format logs with epoch type
vis_backends = [# List of visualization backends
 dict(type='LocalVisBackend')] # Local visualization backend
visualizer = dict(# Config of visualizer
 type='ActionVisualizer', # Name of visualizer
 vis_backends=vis_backends)
log_level = 'INFO' # The level of logging
load_from = ('https://download.openmmlab.com/mmaction/v1.0/recognition/slowonly/'
 'slowonly_imagenet-pretrained-r50_8xb16-4x16x1-steplr-150e_kinetics400-rgb/'
 'slowonly_imagenet-pretrained-r50_8xb16-4x16x1-steplr-150e_kinetics400-rgb_20220901-e7b65fad.pth') # Load model checkpoint as a pre-trained model from a given path. This will not resume training.
resume = False # Whether to resume from the checkpoint defined in `load_from`. If `load_from` is None, it will resume the latest checkpoint in the `work_dir`.

Config System for Action localization

We incorporate modular design into our config system,
which is convenient to conduct various experiments.

	An Example of BMN

To help the users have a basic idea of a complete config structure and the modules in an action localization system,
we make brief comments on the config of BMN as the following.
For more detailed usage and alternative for per parameter in each module, please refer to the API documentation [https://mmaction2.readthedocs.io/en/latest/api.html].

model settings
model = dict(# Config of the model
 type='BMN', # Class name of the localizer
 temporal_dim=100, # Total frames selected for each video
 boundary_ratio=0.5, # Ratio for determining video boundaries
 num_samples=32, # Number of samples for each proposal
 num_samples_per_bin=3, # Number of bin samples for each sample
 feat_dim=400, # Dimension of feature
 soft_nms_alpha=0.4, # Soft NMS alpha
 soft_nms_low_threshold=0.5, # Soft NMS low threshold
 soft_nms_high_threshold=0.9, # Soft NMS high threshold
 post_process_top_k=100) # Top k proposals in post process

dataset settings
dataset_type = 'ActivityNetDataset' # Type of dataset for training, validation and testing
data_root = 'data/activitynet_feature_cuhk/csv_mean_100/' # Root path to data for training
data_root_val = 'data/activitynet_feature_cuhk/csv_mean_100/' # Root path to data for validation and testing
ann_file_train = 'data/ActivityNet/anet_anno_train.json' # Path to the annotation file for training
ann_file_val = 'data/ActivityNet/anet_anno_val.json' # Path to the annotation file for validation
ann_file_test = 'data/ActivityNet/anet_anno_test.json' # Path to the annotation file for testing

train_pipeline = [# Training data processing pipeline
 dict(type='LoadLocalizationFeature'), # Load localization feature pipeline
 dict(type='GenerateLocalizationLabels'), # Generate localization labels pipeline
 dict(
 type='PackLocalizationInputs', # Pack localization data
 keys=('gt_bbox'), # Keys of input
 meta_keys=('video_name'))] # Meta keys of input
val_pipeline = [# Validation data processing pipeline
 dict(type='LoadLocalizationFeature'), # Load localization feature pipeline
 dict(type='GenerateLocalizationLabels'), # Generate localization labels pipeline
 dict(
 type='PackLocalizationInputs', # Pack localization data
 keys=('gt_bbox'), # Keys of input
 meta_keys=('video_name', 'duration_second', 'duration_frame',
 'annotations', 'feature_frame'))] # Meta keys of input
test_pipeline = [# Testing data processing pipeline
 dict(type='LoadLocalizationFeature'), # Load localization feature pipeline
 dict(
 type='PackLocalizationInputs', # Pack localization data
 keys=('gt_bbox'), # Keys of input
 meta_keys=('video_name', 'duration_second', 'duration_frame',
 'annotations', 'feature_frame'))] # Meta keys of input
train_dataloader = dict(# Config of train dataloader
 batch_size=8, # Batch size of each single GPU during training
 num_workers=8, # Workers to pre-fetch data for each single GPU during training
 persistent_workers=True, # If `True`, the dataloader will not shut down the worker processes after an epoch end, which can accelerate training speed
 sampler=dict(
 type='DefaultSampler', # DefaultSampler which supports both distributed and non-distributed training. Refer to https://github.com/open-mmlab/mmengine/blob/main/mmengine/dataset/sampler.py
 shuffle=True), # Randomly shuffle the training data in each epoch
 dataset=dict(# Config of train dataset
 type=dataset_type,
 ann_file=ann_file_train, # Path of annotation file
 data_prefix=dict(video=data_root), # Prefix of video path
 pipeline=train_pipeline))
val_dataloader = dict(# Config of validation dataloader
 batch_size=1, # Batch size of each single GPU during evaluation
 num_workers=8, # Workers to pre-fetch data for each single GPU during evaluation
 persistent_workers=True, # If `True`, the dataloader will not shut down the worker processes after an epoch end
 sampler=dict(
 type='DefaultSampler',
 shuffle=False), # Not shuffle during validation and testing
 dataset=dict(# Config of validation dataset
 type=dataset_type,
 ann_file=ann_file_val, # Path of annotation file
 data_prefix=dict(video=data_root_val), # Prefix of video path
 pipeline=val_pipeline,
 test_mode=True))
test_dataloader = dict(# Config of test dataloader
 batch_size=1, # Batch size of each single GPU during testing
 num_workers=8, # Workers to pre-fetch data for each single GPU during testing
 persistent_workers=True, # If `True`, the dataloader will not shut down the worker processes after an epoch end
 sampler=dict(
 type='DefaultSampler',
 shuffle=False), # Not shuffle during validation and testing
 dataset=dict(# Config of test dataset
 type=dataset_type,
 ann_file=ann_file_val, # Path of annotation file
 data_prefix=dict(video=data_root_val), # Prefix of video path
 pipeline=test_pipeline,
 test_mode=True))

evaluation settings
work_dir = './work_dirs/bmn_400x100_2x8_9e_activitynet_feature/' # Directory to save the model checkpoints and logs for the current experiments
val_evaluator = dict(
 type='ANetMetric',
 metric_type='AR@AN',
 dump_config=dict(# Config of localization output
 out=f'{work_dir}/results.json', # Path to the output file
 output_format='json')) # File format of the output file
test_evaluator = val_evaluator # Set test_evaluator as val_evaluator

max_epochs = 9 # Total epochs to train the model
train_cfg = dict(# Config of training loop
 type='EpochBasedTrainLoop', # Name of training loop
 max_epochs=max_epochs, # Total training epochs
 val_begin=1, # The epoch that begins validating
 val_interval=1) # Validation interval
val_cfg = dict(# Config of validation loop
 type='ValLoop') # Name of validating loop
test_cfg = dict(# Config of testing loop
 type='TestLoop') # Name of testing loop

learning policy
param_scheduler = [# Parameter scheduler for updating optimizer parameters, support dict or list
 dict(type='MultiStepLR', # Decays the learning rate once the number of epoch reaches one of the milestones
 begin=0, # Step at which to start updating the learning rate
 end=max_epochs, # Step at which to stop updating the learning rate
 by_epoch=True, # Whether the scheduled learning rate is updated by epochs
 milestones=[7,], # Steps to decay the learning rate
 gamma=0.1)] # Multiplicative factor of parameter value decay

optimizer
optim_wrapper = dict(# Config of optimizer wrapper
 type='OptimWrapper', # Name of optimizer wrapper, switch to AmpOptimWrapper to enable mixed precision training
 optimizer=dict(# Config of optimizer. Support all kinds of optimizers in PyTorch. Refer to https://pytorch.org/docs/stable/optim.html#algorithms
 type='Adam', # Name of optimizer
 lr=0.001, # Learning rate
 weight_decay=0.0001), # Weight decay
 clip_grad=dict(max_norm=40, norm_type=2)) # Config of gradient clip

runtime settings
default_scope = 'mmaction' # The default registry scope to find modules. Refer to https://mmengine.readthedocs.io/en/latest/tutorials/registry.html
default_hooks = dict(# Hooks to execute default actions like updating model parameters and saving checkpoints.
 runtime_info=dict(type='RuntimeInfoHook'), # The hook to updates runtime information into message hub
 timer=dict(type='IterTimerHook'), # The logger used to record time spent during iteration
 logger=dict(
 type='LoggerHook', # The logger used to record logs during training/validation/testing phase
 interval=20, # Interval to print the log
 ignore_last=False), # Ignore the log of last iterations in each epoch
 param_scheduler=dict(type='ParamSchedulerHook'), # The hook to update some hyper-parameters in optimizer
 checkpoint=dict(
 type='CheckpointHook', # The hook to save checkpoints periodically
 interval=3, # The saving period
 save_best='auto', # Specified metric to mearsure the best checkpoint during evaluation
 max_keep_ckpts=3), # The maximum checkpoints to keep
 sampler_seed=dict(type='DistSamplerSeedHook'), # Data-loading sampler for distributed training
 sync_buffers=dict(type='SyncBuffersHook')) # Synchronize model buffers at the end of each epoch
env_cfg = dict(# Dict for setting environment
 cudnn_benchmark=False, # Whether to enable cudnn benchmark
 mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), # Parameters to setup multiprocessing
 dist_cfg=dict(backend='nccl')) # Parameters to setup distributed environment, the port can also be set

log_processor = dict(
 type='LogProcessor', # Log processor used to format log information
 window_size=20, # Default smooth interval
 by_epoch=True) # Whether to format logs with epoch type
vis_backends = [# List of visualization backends
 dict(type='LocalVisBackend')] # Local visualization backend
visualizer = dict(# Config of visualizer
 type='ActionVisualizer', # Name of visualizer
 vis_backends=vis_backends)
log_level = 'INFO' # The level of logging
load_from = None # Load model checkpoint as a pre-trained model from a given path. This will not resume training.
resume = False # Whether to resume from the checkpoint defined in `load_from`. If `load_from` is None, it will resume the latest checkpoint in the `work_dir`.

Tutorial 2: Prepare Datasets

We provide some tips for MMAction2 data preparation in this file.

	Notes on Video Data Format

	Getting Data

	Prepare videos

	Extract frames

	Alternative to denseflow

	Generate file list

	Prepare audio

Notes on Video Data Format

MMAction2 supports two types of data format: raw frames and video. The former is widely used in previous projects such as TSN [https://github.com/yjxiong/temporal-segment-networks].
This is fast when SSD is available but fails to scale to the fast-growing datasets.
(For example, the newest edition of Kinetics [https://www.deepmind.com/open-source/kinetics] has 650K videos and the total frames will take up several TBs.)
The latter saves much space but has to do the computation intensive video decoding at execution time.
To make video decoding faster, we support several efficient video loading libraries, such as decord [https://github.com/zhreshold/decord], PyAV [https://github.com/PyAV-Org/PyAV], etc.

Getting Data

The following guide is helpful when you want to experiment with custom dataset.
Similar to the datasets stated above, it is recommended organizing in $MMACTION2/data/$DATASET.

Prepare videos

Please refer to the official website and/or the official script to prepare the videos.
Note that the videos should be arranged in either

	A two-level directory organized by ${CLASS_NAME}/${VIDEO_ID}, which is recommended to be used for action recognition datasets (such as UCF101 and Kinetics)

	A single-level directory, which is recommended to be used for action detection datasets or those with multiple annotations per video (such as THUMOS14).

Extract frames

To extract both frames and optical flow, you can use the tool denseflow [https://github.com/open-mmlab/denseflow] we wrote.
Since different frame extraction tools produce different number of frames,
it is beneficial to use the same tool to do both frame extraction and the flow computation, to avoid mismatching of frame counts.

python build_rawframes.py ${SRC_FOLDER} ${OUT_FOLDER} [--task ${TASK}] [--level ${LEVEL}] \
 [--num-worker ${NUM_WORKER}] [--flow-type ${FLOW_TYPE}] [--out-format ${OUT_FORMAT}] \
 [--ext ${EXT}] [--new-width ${NEW_WIDTH}] [--new-height ${NEW_HEIGHT}] [--new-short ${NEW_SHORT}] \
 [--resume] [--use-opencv] [--mixed-ext]

	SRC_FOLDER: Folder of the original video.

	OUT_FOLDER: Root folder where the extracted frames and optical flow store.

	TASK: Extraction task indicating which kind of frames to extract. Allowed choices are rgb, flow, both.

	LEVEL: Directory level. 1 for the single-level directory or 2 for the two-level directory.

	NUM_WORKER: Number of workers to build rawframes.

	FLOW_TYPE: Flow type to extract, e.g., None, tvl1, warp_tvl1, farn, brox.

	OUT_FORMAT: Output format for extracted frames, e.g., jpg, h5, png.

	EXT: Video file extension, e.g., avi, mp4.

	NEW_WIDTH: Resized image width of output.

	NEW_HEIGHT: Resized image height of output.

	NEW_SHORT: Resized image short side length keeping ratio.

	--resume: Whether to resume optical flow extraction instead of overwriting.

	--use-opencv: Whether to use OpenCV to extract rgb frames.

	--mixed-ext: Indicate whether process video files with mixed extensions.

The recommended practice is

	set $OUT_FOLDER to be a folder located in SSD.

	symlink the link $OUT_FOLDER to $MMACTION2/data/$DATASET/rawframes.

	set new-short instead of using new-width and new-height.

ln -s ${YOUR_FOLDER} $MMACTION2/data/$DATASET/rawframes

Alternative to denseflow

In case your device doesn’t fulfill the installation requirement of denseflow [https://github.com/open-mmlab/denseflow](like Nvidia driver version), or you just want to see some quick demos about flow extraction, we provide a python script tools/misc/flow_extraction.py as an alternative to denseflow. You can use it for rgb frames and optical flow extraction from one or several videos. Note that the speed of the script is much slower than denseflow, since it runs optical flow algorithms on CPU.

python tools/misc/flow_extraction.py --input ${INPUT} [--prefix ${PREFIX}] [--dest ${DEST}] [--rgb-tmpl ${RGB_TMPL}] \
 [--flow-tmpl ${FLOW_TMPL}] [--start-idx ${START_IDX}] [--method ${METHOD}] [--bound ${BOUND}] [--save-rgb]

	INPUT: Videos for frame extraction, can be single video or a video list, the video list should be a txt file and just consists of filenames without directories.

	PREFIX: The prefix of input videos, used when input is a video list.

	DEST: The destination to save extracted frames.

	RGB_TMPL: The template filename of rgb frames.

	FLOW_TMPL: The template filename of flow frames.

	START_IDX: The start index of extracted frames.

	METHOD: The method used to generate flow.

	BOUND: The maximum of optical flow.

	SAVE_RGB: Also save extracted rgb frames.

Generate file list

We provide a convenient script to generate annotation file list. You can use the following command to generate file lists given extracted frames / downloaded videos.

cd $MMACTION2
python tools/data/build_file_list.py ${DATASET} ${SRC_FOLDER} [--rgb-prefix ${RGB_PREFIX}] \
 [--flow-x-prefix ${FLOW_X_PREFIX}] [--flow-y-prefix ${FLOW_Y_PREFIX}] [--num-split ${NUM_SPLIT}] \
 [--subset ${SUBSET}] [--level ${LEVEL}] [--format ${FORMAT}] [--out-root-path ${OUT_ROOT_PATH}] \
 [--seed ${SEED}] [--shuffle]

	DATASET: Dataset to be prepared, e.g., ucf101, kinetics400, thumos14, sthv1, sthv2, etc.

	SRC_FOLDER: Folder of the corresponding data format:

	“$MMACTION2/data/$DATASET/rawframes” if --format rawframes.

	“$MMACTION2/data/$DATASET/videos” if --format videos.

	RGB_PREFIX: Name prefix of rgb frames.

	FLOW_X_PREFIX: Name prefix of x flow frames.

	FLOW_Y_PREFIX: Name prefix of y flow frames.

	NUM_SPLIT: Number of split to file list.

	SUBSET: Subset to generate file list. Allowed choice are train, val, test.

	LEVEL: Directory level. 1 for the single-level directory or 2 for the two-level directory.

	FORMAT: Source data format to generate file list. Allowed choices are rawframes, videos.

	OUT_ROOT_PATH: Root path for output

	SEED: Random seed.

	--shuffle: Whether to shuffle the file list.

Prepare audio

We also provide a simple script for audio waveform extraction and mel-spectrogram generation.

cd $MMACTION2
python tools/data/extract_audio.py ${ROOT} ${DST_ROOT} [--ext ${EXT}] [--num-workers ${N_WORKERS}] \
 [--level ${LEVEL}]

	ROOT: The root directory of the videos.

	DST_ROOT: The destination root directory of the audios.

	EXT: Extension of the video files. e.g., mp4.

	N_WORKERS: Number of processes to be used.

After extracting audios, you are free to decode and generate the spectrogram on-the-fly such as this. As for the annotations, you can directly use those of the rawframes as long as you keep the relative position of audio files same as the rawframes directory. However, extracting spectrogram on-the-fly is slow and bad for prototype iteration. Therefore, we also provide a script (and many useful tools to play with) for you to generation spectrogram off-line.

cd $MMACTION2
python tools/data/build_audio_features.py ${AUDIO_HOME_PATH} ${SPECTROGRAM_SAVE_PATH} [--level ${LEVEL}] \
 [--ext $EXT] [--num-workers $N_WORKERS] [--part $PART]

	AUDIO_HOME_PATH: The root directory of the audio files.

	SPECTROGRAM_SAVE_PATH: The destination root directory of the audio features.

	EXT: Extension of the audio files. e.g., m4a.

	N_WORKERS: Number of processes to be used.

	PART: Determines how many parts to be splited and which part to run. e.g., 2/5 means splitting all files into 5-fold and executing the 2nd part. This is useful if you have several machines.

The annotations for audio spectrogram features are identical to those of rawframes. You can simply make a copy of dataset_[train/val]_list_rawframes.txt and rename it as dataset_[train/val]_list_audio_feature.txt

Tutorial 3: Inference with existing models

MMAction2 provides pre-trained models for video understanding in Model Zoo.
This note will show how to use existing models to inference on given video.

As for how to test existing models on standard datasets, please see this guide

Inference on a given video

MMAction2 provides high-level Python APIs for inference on a given video:

	init_recognizer: Initialize a recognizer with a config and checkpoint

	inference_recognizer: Inference on a given video

Here is an example of building the model and inference on a given video by using Kinitics-400 pre-trained checkpoint.

Note

If you use mmaction2 as a 3rd-party package, you need to download the conifg and the demo video in the example.

Run ‘mim download mmaction2 –config tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb –dest .’ to download the required config.

Run ‘wget https://github.com/open-mmlab/mmaction2/blob/dev-1.x/demo/demo.mp4’ to download the desired demo video.

from mmaction.apis import inference_recognizer, init_recognizer

config_path = 'configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb.py'
checkpoint_path = 'https://download.openmmlab.com/mmaction/v1.0/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb/tsn_imagenet-pretrained-r50_8xb32-1x1x8-100e_kinetics400-rgb_20220906-2692d16c.pth' # can be a local path
img_path = 'demo/demo.mp4' # you can specify your own picture path

build the model from a config file and a checkpoint file
model = init_recognizer(config_path, checkpoint_path, device="cpu") # device can be 'cuda:0'
test a single image
result = inference_recognizer(model, img_path)

result is a dictionary containing pred_scores.

An action recognition demo can be found in demo/demo.py [https://github.com/open-mmlab/mmaction2/blob/dev-1.x/demo/demo.py].

Tutorial 4: Training and Test

Training

Training with your PC

You can use tools/train.py to train a model on a single machine with a CPU and optionally a GPU.

Here is the full usage of the script:

python tools/train.py ${CONFIG_FILE} [ARGS]

Note

By default, MMAction2 prefers GPU to CPU. If you want to train a model on CPU, please empty CUDA_VISIBLE_DEVICES or set it to -1 to make GPU invisible to the program.

CUDA_VISIBLE_DEVICES=-1 python tools/train.py ${CONFIG_FILE} [ARGS]

	ARGS
	Description

	CONFIG_FILE
	The path to the config file.

	--work-dir WORK_DIR
	The target folder to save logs and checkpoints. Defaults to a folder with the same name of the config file under ./work_dirs.

	--resume [RESUME]
	Resume training. If a path is specified, resume from it, while if not specified, try to auto resume from the latest checkpoint.

	--amp
	Enable automatic-mixed-precision training.

	--no-validate
	Not suggested. Disable checkpoint evaluation during training.

	--auto-scale-lr
	Auto scale the learning rate according to the actual batch size and the original batch size.

	--seed
	Random seed.

	--diff-rank-seed
	Whether or not set different seeds for different ranks.

	--deterministic
	Whether to set deterministic options for CUDNN backend.

	--cfg-options CFG_OPTIONS
	Override some settings in the used config, the key-value pair in xxx=yyy format will be merged into the config file. If the value to be overwritten is a list, it should be of the form of either key="[a,b]" or key=a,b. The argument also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]". Note that the quotation marks are necessary and that no white space is allowed.

	--launcher {none,pytorch,slurm,mpi}
	Options for job launcher. Defaults to none.

Training with multiple GPUs

We provide a shell script to start a multi-GPUs task with torch.distributed.launch.

bash tools/dist_train.sh ${CONFIG} ${GPUS} [PY_ARGS]

	ARGS
	Description

	CONFIG
	The path to the config file.

	GPUS
	The number of GPUs to be used.

	[PYARGS]
	The other optional arguments of tools/train.py, see here.

You can also specify extra arguments of the launcher by environment variables. For example, change the
communication port of the launcher to 29666 by the following command:

PORT=29666 bash tools/dist_train.sh ${CONFIG} ${GPUS} [PY_ARGS]

If you want to startup multiple training jobs and use different GPUs, you can launch them by specifying
different port and visible devices.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 bash tools/dist_train.sh ${CONFIG} 4 [PY_ARGS]
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 bash tools/dist_train.sh ${CONFIG} 4 [PY_ARGS]

Training with multiple machines

Multiple machines in the same network

If you launch a training job with multiple machines connected with ethernet, you can run the following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR bash tools/dist_train.sh $CONFIG $GPUS

On the second machine:

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR bash tools/dist_train.sh $CONFIG $GPUS

The following extra environment variables need to be specified to train or test models with multiple machines:

	ENV_VARS
	Description

	NNODES
	The total number of machines. Defaults to 1.

	NODE_RANK
	The index of the local machine. Defaults to 0.

	PORT
	The communication port, it should be the same in all machines. Defaults to 29500.

	MASTER_ADDR
	The IP address of the master machine, it should be the same in all machines. Defaults to 127.0.0.1.

Usually it is slow if you do not have high speed networking like InfiniBand.

Multiple machines managed with slurm

If you run MMAction2 on a cluster managed with slurm [https://slurm.schedmd.com/], you can use the script slurm_train.sh.

[ENV_VARS] bash tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG} [PY_ARGS]

Here are the arguments description of the script.

	ARGS
	Description

	PARTITION
	The partition to use in your cluster.

	JOB_NAME
	The name of your job, you can name it as you like.

	CONFIG
	The path to the config file.

	[PYARGS]
	The other optional arguments of tools/train.py, see here.

Here are the environment variables can be used to configure the slurm job.

	ENV_VARS
	Description

	GPUS
	The number of GPUs to be used. Defaults to 8.

	GPUS_PER_NODE
	The number of GPUs to be allocated per node. Defaults to 8.

	CPUS_PER_TASK
	The number of CPUs to be allocated per task (Usually one GPU corresponds to one task). Defaults to 5.

	SRUN_ARGS
	The other arguments of srun. Available options can be found here.

Test

Test with your PC

You can use tools/test.py to test a model on a single machine with a CPU and optionally a GPU.

Here is the full usage of the script:

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [ARGS]

Note

By default, MMAction2 prefers GPU to CPU. If you want to test a model on CPU, please empty CUDA_VISIBLE_DEVICES or set it to -1 to make GPU invisible to the program.

CUDA_VISIBLE_DEVICES=-1 python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [ARGS]

	ARGS
	Description

	CONFIG_FILE
	The path to the config file.

	CHECKPOINT_FILE
	The path to the checkpoint file (It can be a http link)

	--work-dir WORK_DIR
	The directory to save the file containing evaluation metrics. Defaults to a folder with the same name of the config file under ./work_dirs.

	--dump DUMP
	The path to dump all outputs of the model for offline evaluation.

	--cfg-options CFG_OPTIONS
	Override some settings in the used config, the key-value pair in xxx=yyy format will be merged into the config file. If the value to be overwritten is a list, it should be of the form of either key="[a,b]" or key=a,b. The argument also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]". Note that the quotation marks are necessary and that no white space is allowed.

	--show-dir SHOW_DIR
	The directory to save the result visualization images.

	--show
	Visualize the prediction result in a window.

	--interval INTERVAL
	The interval of samples to visualize. Defaults to 1.

	--wait-time WAIT_TIME
	The display time of every window (in seconds). Defaults to 2.

	--launcher {none,pytorch,slurm,mpi}
	Options for job launcher. Defaults to none.

Test with multiple GPUs

We provide a shell script to start a multi-GPUs task with torch.distributed.launch.

bash tools/dist_test.sh ${CONFIG} ${CHECKPOINT} ${GPUS} [PY_ARGS]

	ARGS
	Description

	CONFIG
	The path to the config file.

	CHECKPOINT
	The path to the checkpoint file (It can be a http link)

	GPUS
	The number of GPUs to be used.

	[PYARGS]
	The other optional arguments of tools/test.py, see here.

You can also specify extra arguments of the launcher by environment variables. For example, change the
communication port of the launcher to 29666 by the following command:

PORT=29666 bash tools/dist_test.sh ${CONFIG} ${CHECKPOINT} ${GPUS} [PY_ARGS]

If you want to startup multiple test jobs and use different GPUs, you can launch them by specifying
different port and visible devices.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 bash tools/dist_test.sh ${CONFIG} ${CHECKPOINT} 4 [PY_ARGS]
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 bash tools/dist_test.sh ${CONFIG} ${CHECKPOINT} 4 [PY_ARGS]

Test with multiple machines

Multiple machines in the same network

If you launch a test job with multiple machines connected with ethernet, you can run the following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR bash tools/dist_test.sh $CONFIG $CHECKPOINT $GPUS

On the second machine:

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR bash tools/dist_test.sh $CONFIG $CHECKPOINT $GPUS

Compared with multi-GPUs in a single machine, you need to specify some extra environment variables:

	ENV_VARS
	Description

	NNODES
	The total number of machines. Defaults to 1.

	NODE_RANK
	The index of the local machine. Defaults to 0.

	PORT
	The communication port, it should be the same in all machines. Defaults to 29500.

	MASTER_ADDR
	The IP address of the master machine, it should be the same in all machines. Defaults to 127.0.0.1.

Usually it is slow if you do not have high speed networking like InfiniBand.

Multiple machines managed with slurm

If you run MMAction2 on a cluster managed with slurm [https://slurm.schedmd.com/], you can use the script slurm_test.sh.

[ENV_VARS] bash tools/slurm_test.sh ${PARTITION} ${JOB_NAME} ${CONFIG} ${CHECKPOINT} [PY_ARGS]

Here are the arguments description of the script.

	ARGS
	Description

	PARTITION
	The partition to use in your cluster.

	JOB_NAME
	The name of your job, you can name it as you like.

	CONFIG
	The path to the config file.

	CHECKPOINT
	The path to the checkpoint file (It can be a http link)

	[PYARGS]
	The other optional arguments of tools/test.py, see here.

Here are the environment variables can be used to configure the slurm job.

	ENV_VARS
	Description

	GPUS
	The number of GPUs to be used. Defaults to 8.

	GPUS_PER_NODE
	The number of GPUs to be allocated per node. Defaults to 8.

	CPUS_PER_TASK
	The number of CPUs to be allocated per task (Usually one GPU corresponds to one task). Defaults to 5.

	SRUN_ARGS
	The other arguments of srun. Available options can be found here.

Other Useful Tools

Apart from training/testing scripts, We provide lots of useful tools under the tools/ directory.

Useful Tools Link

	Other Useful Tools

	Useful Tools Link

	Model Conversion

	Prepare a model for publishing

	Miscellaneous

	Evaluating a metric

	Print the entire config

	Check videos

	Multi-Stream Fusion

Model Conversion

Prepare a model for publishing

tools/deployment/publish_model.py helps users to prepare their model for publishing.

Before you upload a model to AWS, you may want to:

(1) convert model weights to CPU tensors.
(2) delete the optimizer states.
(3) compute the hash of the checkpoint file and append the hash id to the filename.

python tools/deployment/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}

E.g.,

python tools/deployment/publish_model.py work_dirs/tsn_r50_8xb32-1x1x3-100e_kinetics400-rgb/latest.pth tsn_r50_1x1x3_100e_kinetics400_rgb.pth

The final output filename will be tsn_r50_8xb32-1x1x3-100e_kinetics400-rgb-{hash id}.pth.

Miscellaneous

Evaluating a metric

tools/analysis_tools/eval_metric.py evaluates certain metrics of the results saved in a file according to a config file.

The saved result file is created on tools/test.py by setting the arguments --out ${RESULT_FILE} to indicate the result file,
which stores the final output of the whole model.

python tools/analysis/eval_metric.py ${CONFIG_FILE} ${RESULT_FILE} [--eval ${EVAL_METRICS}] [--cfg-options ${CFG_OPTIONS}] [--eval-options ${EVAL_OPTIONS}]

Print the entire config

tools/analysis_tools/print_config.py prints the whole config verbatim, expanding all its imports.

python tools/analysis_tools/print_config.py ${CONFIG} [-h] [--options ${OPTIONS [OPTIONS...]}]

Check videos

tools/analysis_tools/check_videos.py uses specified video encoder to iterate all samples that are specified by the input configuration file, looks for invalid videos (corrupted or missing), and saves the corresponding file path to the output file. Please note that after deleting invalid videos, users need to regenerate the video file list.

python tools/analysis_tools/check_videos.py ${CONFIG} [-h] [--options OPTIONS [OPTIONS ...]] [--cfg-options CFG_OPTIONS [CFG_OPTIONS ...]] [--output-file OUTPUT_FILE] [--split SPLIT] [--decoder DECODER] [--num-processes NUM_PROCESSES] [--remove-corrupted-videos]

Multi-Stream Fusion

tools/analysis_tools/report_accuracy.py uses the dumped results (by setting --dump res.pkl when testing) to fuse the multi-stream prediction scores, i.e., late fusion.

python tools/analysis_tools/report_accuracy.py [--preds ${RESULT_PKL_1 [RESULT_PKL_2 ...]}] [--coefficients ${COEFFICIENT_1 [COEFFICIENT_2, ...]}] [--apply-softmax]

Take joint-bone fusion as an example, which is a general practice in the task of skeleton-based action recognition.

python tools/analysis_tools/report_accuracy.py --preds demo/fuse/joint.pkl demo/fuse/bone.pkl --coefficients 1.0 1.0

Note

Mean Class Accuracy: 0.9180
Top 1 Accuracy: 0.9333
Top 5 Accuracy: 0.9833

Visualization Tools

Visualize dataset

You can use tools/analysis_tools/browse_dataset.py to visualize video datasets:

python tools/analysis_tools/browse_dataset.py ${CONFIG_FILE} [ARGS]

	ARGS
	Description

	CONFIG_FILE
	The path to the config file.

	--output-dir OUTPUT_DIR
	If there is no display interface, you can save the visualization results to OUTPUT_DIR. Defaults to None

	--show-frames
	Display the frames of the video if you have the display interface. Defaults to False.

	--phase PHASE
	Phase of the dataset to visualize, accept train, test and val. Defaults to train.

	--show-number SHOW_NUMBER
	Number of images selected to visualize, must bigger than 0. Jf the number is bigger than length of dataset, show all the images in dataset. Defaults to "sys.maxsize", show all images in dataset

	--show-interval SHOW_INTERVAL
	The interval of show (s). Defaults to 2.

	--mode MODE
	Display mode: display original videos or transformed videos. original means show videos load from disk while transformed means to show videos after transformed. Defaults to transformed.

	--cfg-options CFG_OPTIONS
	Override some settings in the used config, the key-value pair in xxx=yyy format will be merged into the config file. If the value to be overwritten is a list, it should be of the form of either key="[a,b]" or key=a,b. The argument also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]". Note that the quotation marks are necessary and that no white space is allowed.

Migration from MMAction2 0.x

MMAction2 1.x introduced major refactorings and modifications including some BC-breaking changes. We provide this tutorial to help you migrate your projects from MMAction2 0.x smoothly.

New dependencies

MMAction2 1.x depends on the following packages. You are recommended to prepare a new clean environment and install them according to install tutorial

	MMEngine [https://github.com/open-mmlab/mmengine]: MMEngine is a foundational library for training deep learning model introduced in OpenMMLab 2.0 architecture.

	MMCV [https://github.com/open-mmlab/mmcv]: MMCV is a foundational library for computer vision. MMAction2 1.x requires mmcv>=2.0.0rc0 which is more compact and efficient than mmcv-full==1.x.

Configuration files

In MMAction2 1.x, we refactored the structure of configuration files. The configuration files with the old style will be incompatible.

In this section, we will introduce all changes of the configuration files. And we assume you are already familiar with the config files.

Model settings

No changes in model.backbone and model.neck. For model.cls_head, we move the average_clips inside it, which is originally set in model.test_cfg.

Data settings

Changes in data

	The original data field is splited to train_dataloader, val_dataloader and
test_dataloader. This allows us to configure them in fine-grained. For example,
you can specify different sampler and batch size during training and test.

	The videos_per_gpu is renamed to batch_size.

	The workers_per_gpu is renamed to num_workers.

	Original
	
data = dict(
 videos_per_gpu=32,
 workers_per_gpu=2,
 train=dict(...),
 val=dict(...),
 test=dict(...),
)

	New
	
train_dataloader = dict(
 batch_size=32,
 num_workers=2,
 dataset=dict(...),
 sampler=dict(type='DefaultSampler', shuffle=True) # necessary
)

val_dataloader = dict(
 batch_size=32,
 num_workers=2,
 dataset=dict(...),
 sampler=dict(type='DefaultSampler', shuffle=False) # necessary
)

test_dataloader = val_dataloader

 Overview

Overview

	Number of checkpoints: 179

	Number of configs: 177

	Number of papers: 33

	ALGORITHM: 28

	BACKBONE: 1

	DATASET: 3

	OTHERS: 1

For supported datasets, see datasets overview.

 Spatio Temporal Action Detection Models

	Number of checkpoints: 25

	Number of configs: 27

	Number of papers: 5

	[ALGORITHM] Ava: A Video Dataset of Spatio-Temporally Localized Atomic Visual Actions (-> -> ->)

	[ALGORITHM] Slowfast Networks for Video Recognition (->)

	[ALGORITHM] The Ava-Kinetics Localized Human Actions Video Dataset (->)

	[DATASET] Ava: A Video Dataset of Spatio-Temporally Localized Atomic Visual Actions (-> -> ->)

	[DATASET] The Ava-Kinetics Localized Human Actions Video Dataset (->)

 Action Localization Models

	Number of checkpoints: 2

	Number of configs: 2

	Number of papers: 3

	[ALGORITHM] Bmn: Boundary-Matching Network for Temporal Action Proposal Generation (->)

	[ALGORITHM] Bsn: Boundary Sensitive Network for Temporal Action Proposal Generation (->)

	[DATASET] Cuhk & Ethz & Siat Submission to Activitynet Challenge 2017 (->)

 Action Recognition Models

	Number of checkpoints: 114

	Number of configs: 111

	Number of papers: 22

	[ALGORITHM] A Closer Look at Spatiotemporal Convolutions for Action Recognition (->)

	[ALGORITHM] Audiovisual Slowfast Networks for Video Recognition (->)

	[ALGORITHM] Is Space-Time Attention All You Need for Video Understanding? (->)

	[ALGORITHM] Learning Spatiotemporal Features With 3d Convolutional Networks (->)

	[ALGORITHM] Mvitv2: Improved Multiscale Vision Transformers for Classification and Detection (->)

	[ALGORITHM] Non-Local Neural Networks (-> -> ->)

	[ALGORITHM] Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset (->)

	[ALGORITHM] Slowfast Networks for Video Recognition (-> -> ->)

	[ALGORITHM] Tam: Temporal Adaptive Module for Video Recognition (->)

	[ALGORITHM] Temporal Interlacing Network (->)

	[ALGORITHM] Temporal Pyramid Network for Action Recognition (->)

	[ALGORITHM] Temporal Relational Reasoning in Videos (->)

	[ALGORITHM] Temporal Segment Networks: Towards Good Practices for Deep Action Recognition (->)

	[ALGORITHM] Tsm: Temporal Shift Module for Efficient Video Understanding (->)

	[ALGORITHM] Uniformer: Unified Transformer for Efficient Spatial-Temporal Representation Learning (->)

	[ALGORITHM] Uniformerv2: Spatiotemporal Learning by Arming Image Vits With Video Uniformer (->)

	[ALGORITHM] Video Classification With Channel-Separated Convolutional Networks (->)

	[ALGORITHM] Video Swin Transformer (->)

	[ALGORITHM] Video{mae (->)

	[ALGORITHM] X3d: Expanding Architectures for Efficient Video Recognition (->)

	[BACKBONE] Non-Local Neural Networks (-> -> ->)

	[OTHERS] Large-Scale Weakly-Supervised Pre-Training for Video Action Recognition (->)

 Skeleton-based Action Recognition Models

	Number of checkpoints: 38

	Number of configs: 37

	Number of papers: 4

	[ALGORITHM] Pyskl: Towards Good Practices for Skeleton Action Recognition (->)

	[ALGORITHM] Revisiting Skeleton-Based Action Recognition (->)

	[ALGORITHM] Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition (->)

	[ALGORITHM] Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition (->)

 Action Recognition Models

Action Recognition Models

C2D

Non-local Neural Networks [https://arxiv.org/abs/1711.07971]

Abstract

Both convolutional and recurrent operations are building blocks that process one local neighborhood at a time. In this paper, we present non-local operations as a generic family of building blocks for capturing long-range dependencies. Inspired by the classical non-local means method in computer vision, our non-local operation computes the response at a position as a weighted sum of the features at all positions. This building block can be plugged into many computer vision architectures. On the task of video classification, even without any bells and whistles, our non-local models can compete or outperform current competition winners on both Kinetics and Charades datasets. In static image recognition, our non-local models improve object detection/segmentation and pose estimation on the COCO suite of tasks.

 Spatio Temporal Action Detection Models

Spatio Temporal Action Detection Models

ACRN

Actor-centric relation network [https://openaccess.thecvf.com/content_ECCV_2018/html/Chen_Sun_Actor-centric_Relation_Network_ECCV_2018_paper.html]

Abstract

Current state-of-the-art approaches for spatio-temporal action localization rely on detections at the frame level and model temporal context with 3D ConvNets. Here, we go one step further and model spatio-temporal relations to capture the interactions between human actors, relevant objects and scene elements essential to differentiate similar human actions. Our approach is weakly supervised and mines the relevant elements automatically with an actor-centric relational network (ACRN). ACRN computes and accumulates pair-wise relation information from actor and global scene features, and generates relation features for action classification. It is implemented as neural networks and can be trained jointly with an existing action detection system. We show that ACRN outperforms alternative approaches which capture relation information, and that the proposed framework improves upon the state-of-the-art performance on JHMDB and AVA. A visualization of the learned relation features confirms that our approach is able to attend to the relevant relations for each action.

 Skeleton-based Action Recognition Models

Skeleton-based Action Recognition Models

AGCN

Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition [https://openaccess.thecvf.com/content_CVPR_2019/html/Shi_Two-Stream_Adaptive_Graph_Convolutional_Networks_for_Skeleton-Based_Action_Recognition_CVPR_2019_paper.html]

Abstract

In skeleton-based action recognition, graph convolutional networks (GCNs), which model the human body skeletons as spatiotemporal graphs, have achieved remarkable performance. However, in existing GCN-based methods, the topology of the graph is set manually, and it is fixed over all layers and input samples. This may not be optimal for the hierarchical GCN and diverse samples in action recognition tasks. In addition, the second-order information (the lengths and directions of bones) of the skeleton data, which is naturally more informative and discriminative for action recognition, is rarely investigated in existing methods. In this work, we propose a novel two-stream adaptive graph convolutional network (2s-AGCN) for skeleton-based action recognition. The topology of the graph in our model can be either uniformly or individually learned by the BP algorithm in an end-to-end manner. This data-driven method increases the flexibility of the model for graph construction and brings more generality to adapt to various data samples. Moreover, a two-stream framework is proposed to model both the first-order and the second-order information simultaneously, which shows notable improvement for the recognition accuracy. Extensive experiments on the two large-scale datasets, NTU-RGBD and Kinetics-Skeleton, demonstrate that the performance of our model exceeds the state-of-the-art with a significant margin.

 Action Localization Models

Action Localization Models

BMN

Bmn: Boundary-matching network for temporal action proposal generation [https://openaccess.thecvf.com/content_ICCV_2019/html/Lin_BMN_Boundary-Matching_Network_for_Temporal_Action_Proposal_Generation_ICCV_2019_paper.html]

Abstract

Temporal action proposal generation is an challenging and promising task which aims to locate temporal regions in real-world videos where action or event may occur. Current bottom-up proposal generation methods can generate proposals with precise boundary, but cannot efficiently generate adequately reliable confidence scores for retrieving proposals. To address these difficulties, we introduce the Boundary-Matching (BM) mechanism to evaluate confidence scores of densely distributed proposals, which denote a proposal as a matching pair of starting and ending boundaries and combine all densely distributed BM pairs into the BM confidence map. Based on BM mechanism, we propose an effective, efficient and end-to-end proposal generation method, named Boundary-Matching Network (BMN), which generates proposals with precise temporal boundaries as well as reliable confidence scores simultaneously. The two-branches of BMN are jointly trained in an unified framework. We conduct experiments on two challenging datasets: THUMOS-14 and ActivityNet-1.3, where BMN shows significant performance improvement with remarkable efficiency and generalizability. Further, combining with existing action classifier, BMN can achieve state-of-the-art temporal action detection performance.

 Contributing to MMAction2

Contributing to MMAction2

All kinds of contributions are welcome, including but not limited to the following.

	Fixes (typo, bugs)

	New features and components

	Add documentation or translate the documentation into other languages

Workflow

	Fork and pull the latest mmaction2

	Checkout a new branch with a meaningful name (do not use master branch for PRs)

	Commit your changes

	Create a PR

Note

	If you plan to add some new features that involve large changes, it is encouraged to open an issue for discussion first.

	If you are the author of some papers and would like to include your method to mmaction2, please contact us. We will much appreciate your contribution.

Code style

Python

We adopt PEP8 [https://www.python.org/dev/peps/pep-0008/] as the preferred code style.

We use the following tools for linting and formatting:

	flake8 [http://flake8.pycqa.org/en/latest/]: linter

	yapf [https://github.com/google/yapf]: formatter

	isort [https://github.com/timothycrosley/isort]: sort imports

	codespell [https://github.com/codespell-project/codespell]: A Python utility to fix common misspellings in text files.

	mdformat [https://github.com/executablebooks/mdformat]: Mdformat is an opinionated Markdown formatter that can be used to enforce a consistent style in Markdown files.

	docformatter [https://github.com/myint/docformatter]: A formatter to format docstring.

Style configurations of yapf and isort can be found in setup.cfg.

We use pre-commit hook [https://pre-commit.com/] that checks and formats for flake8, yapf, isort, trailing whitespaces, markdown files, fixes end-of-files, sorts requirments.txt automatically on every commit.
The config for a pre-commit hook is stored in .pre-commit-config.

After you clone the repository, you will need to install initialize pre-commit hook.

pip install -U pre-commit

From the repository folder

pre-commit install

After this on every commit check code linters and formatter will be enforced.

Before you create a PR, make sure that your code lints and is formatted by yapf.

C++ and CUDA

We follow the Google C++ Style Guide [https://google.github.io/styleguide/cppguide.html].

 Projects based on MMAction2

Projects based on MMAction2

There are many research works and projects built on MMAction2.
We list some of them as examples of how to extend MMAction2 for your own projects.
As the page might not be completed, please feel free to create a PR to update this page.

Projects as an extension

	OTEAction2 [https://github.com/openvinotoolkit/mmaction2]: OpenVINO Training Extensions for Action Recognition.

	PYSKL [https://github.com/kennymckormick/pyskl]: A Toolbox Focusing on Skeleton-Based Action Recognition.

Projects of papers

There are also projects released with papers.
Some of the papers are published in top-tier conferences (CVPR, ICCV, and ECCV), the others are also highly influential.
To make this list also a reference for the community to develop and compare new video understanding algorithms, we list them following the time order of top-tier conferences.
Methods already supported and maintained by MMAction2 are not listed.

	Video Swin Transformer, CVPR 2022. [paper] [https://arxiv.org/abs/2106.13230][github] [https://github.com/SwinTransformer/Video-Swin-Transformer]

	Evidential Deep Learning for Open Set Action Recognition, ICCV 2021 Oral. [paper] [https://arxiv.org/abs/2107.10161][github] [https://github.com/Cogito2012/DEAR]

	Rethinking Self-supervised Correspondence Learning: A Video Frame-level Similarity Perspective, ICCV 2021 Oral. [paper] [https://arxiv.org/abs/2103.17263][github] [https://github.com/xvjiarui/VFS]

	MGSampler: An Explainable Sampling Strategy for Video Action Recognition, ICCV 2021. [paper] [https://arxiv.org/abs/2104.09952][github] [https://github.com/MCG-NJU/MGSampler]

	MultiSports: A Multi-Person Video Dataset of Spatio-Temporally Localized Sports Actions, ICCV 2021. [paper] [https://arxiv.org/abs/2105.07404]

	Long Short-Term Transformer for Online Action Detection, NeurIPS 2021 [paper] [https://arxiv.org/abs/2107.03377][github] [https://github.com/amazon-research/long-short-term-transformer]

 Changelog

Changelog

1.0.0rc3 (2/10/2023)

Highlights

	Support Action Recognition model UniFormer V1(ICLR’2022), UniFormer V2(Arxiv’2022).

	Support training MViT V2(CVPR’2022), and MaskFeat(CVPR’2022) fine-tuning.

New Features

	Support UniFormer V1/V2 (#2153 [https://github.com/open-mmlab/mmaction2/pull/2153])

	Support training MViT, and MaskFeat fine-tuning (#2186 [https://github.com/open-mmlab/mmaction2/pull/2186])

	Support a unified inference interface: Inferencer (#2164 [https://github.com/open-mmlab/mmaction2/pull/2164])

Improvements

	Support load data list from multi-backends (#2176 [https://github.com/open-mmlab/mmaction2/pull/2176])

Bug Fixes

	Upgrade isort to fix CI (#2198 [https://github.com/open-mmlab/mmaction2/pull/2198])

	Fix bug in skeleton demo (#2214 [https://github.com/open-mmlab/mmaction2/pull/2214])

Documentation

	Add Chinese documentation for config.md (#2188 [https://github.com/open-mmlab/mmaction2/pull/2188])

	Add readme for Omnisource (#2205 [https://github.com/open-mmlab/mmaction2/pull/2205])

1.0.0rc2 (1/10/2023)

Highlights

	Support Action Recognition model VideoMAE(NeurIPS’2022), MViT V2(CVPR’2022), C2D and skeleton-based action recognition model STGCN++

	Support Omni-Source training on ImageNet and Kinetics datasets

	Support exporting spatial-temporal detection models to ONNX

New Features

	Support VideoMAE (#1942 [https://github.com/open-mmlab/mmaction2/pull/1942])

	Support MViT V2 (#2007 [https://github.com/open-mmlab/mmaction2/pull/2007])

	Support C2D (#2022 [https://github.com/open-mmlab/mmaction2/pull/2022])

	Support AVA-Kinetics dataset (#2080 [https://github.com/open-mmlab/mmaction2/pull/2080])

	Support STGCN++ (#2156 [https://github.com/open-mmlab/mmaction2/pull/2156])

	Support exporting spatial-temporal detection models to ONNX (#2148 [https://github.com/open-mmlab/mmaction2/pull/2148])

	Support Omni-Source training on ImageNet and Kinetics datasets (#2143 [https://github.com/open-mmlab/mmaction2/pull/2143])

Improvements

	Support repeat batch data augmentation (#2170 [https://github.com/open-mmlab/mmaction2/pull/2170])

	Support calculating FLOPs tool powered by fvcore (#1997 [https://github.com/open-mmlab/mmaction2/pull/1997])

	Support Spatial-temporal detection demo (#2019 [https://github.com/open-mmlab/mmaction2/pull/2019])

	Add SyncBufferHook and add randomness config in train.py (#2044 [https://github.com/open-mmlab/mmaction2/pull/2044])

	Refactor gradcam (#2049 [https://github.com/open-mmlab/mmaction2/pull/2049])

	Support init_cfg in Swin and ViTMAE (#2055 [https://github.com/open-mmlab/mmaction2/pull/2055])

	Refactor STGCN and related pipelines (#2087 [https://github.com/open-mmlab/mmaction2/pull/2087])

	Refactor visualization tools (#2092 [https://github.com/open-mmlab/mmaction2/pull/2092])

	Update SampleFrames transform and improve most models’ performance (#1942 [https://github.com/open-mmlab/mmaction2/pull/1942])

	Support real-time webcam demo (#2152 [https://github.com/open-mmlab/mmaction2/pull/2152])

	Refactor and enhance 2s-AGCN (#2130 [https://github.com/open-mmlab/mmaction2/pull/2130])

	Support adjusting fps in SampleFrame (#2157 [https://github.com/open-mmlab/mmaction2/pull/2157])

Bug Fixes

	Fix CI upstream library dependency (#2000 [https://github.com/open-mmlab/mmaction2/pull/2000])

	Fix SlowOnly readme typos and results (#2006 [https://github.com/open-mmlab/mmaction2/pull/2006])

	Fix VideoSwin readme (#2010 [https://github.com/open-mmlab/mmaction2/pull/2010])

	Fix tools and mim error (#2028 [https://github.com/open-mmlab/mmaction2/pull/2028])

	Fix Imgaug wrapper (#2024 [https://github.com/open-mmlab/mmaction2/pull/2024])

	Remove useless scripts (#2032 [https://github.com/open-mmlab/mmaction2/pull/2032])

	Fix multi-view inference (#2045 [https://github.com/open-mmlab/mmaction2/pull/2045])

	Update mmcv maximum version to 1.8.0 (#2047 [https://github.com/open-mmlab/mmaction2/pull/2047])

	Fix torchserver dependency (#2053 [https://github.com/open-mmlab/mmaction2/pull/2053])

	Fix gen_ntu_rgbd_raw script (#2076 [https://github.com/open-mmlab/mmaction2/pull/2076])

	Update AVA-Kinetics experiment configs and results (#2099 [https://github.com/open-mmlab/mmaction2/pull/2099])

	Add joint.pkl and bone.pkl used in multi-stream fusion tool (#2106 [https://github.com/open-mmlab/mmaction2/pull/2106])

	Fix lint CI config (#2110 [https://github.com/open-mmlab/mmaction2/pull/2110])

	Update testing accuracy for modified SampleFrames (#2117 [https://github.com/open-mmlab/mmaction2/pull/2117]), (#2121 [https://github.com/open-mmlab/mmaction2/pull/2121]), (#2122 [https://github.com/open-mmlab/mmaction2/pull/2122]), (#2124 [https://github.com/open-mmlab/mmaction2/pull/2124]), (#2125 [https://github.com/open-mmlab/mmaction2/pull/2125]), (#2126 [https://github.com/open-mmlab/mmaction2/pull/2126]), (#2129 [https://github.com/open-mmlab/mmaction2/pull/2129]), (#2128 [https://github.com/open-mmlab/mmaction2/pull/2128])

	Fix timm related bug (#1976 [https://github.com/open-mmlab/mmaction2/pull/1976])

	Fix check_videos.py script (#2134 [https://github.com/open-mmlab/mmaction2/pull/2134])

	Update CI maximum torch version to 1.13.0 (#2118 [https://github.com/open-mmlab/mmaction2/pull/2118])

Documentation

	Add MMYOLO description in README (#2011 [https://github.com/open-mmlab/mmaction2/pull/2011])

	Add v1.x introduction in README (#2023 [https://github.com/open-mmlab/mmaction2/pull/2023])

	Fix link in README (#2035 [https://github.com/open-mmlab/mmaction2/pull/2035])

	Refine some docs (#2038 [https://github.com/open-mmlab/mmaction2/pull/2038]), (#2040 [https://github.com/open-mmlab/mmaction2/pull/2040]), (#2058 [https://github.com/open-mmlab/mmaction2/pull/2058])

	Update TSN/TSM Readme (#2082 [https://github.com/open-mmlab/mmaction2/pull/2082])

	Add chinese document (#2083 [https://github.com/open-mmlab/mmaction2/pull/2083])

	Adjust document structure (#2088 [https://github.com/open-mmlab/mmaction2/pull/2088])

	Fix Sth-Sth and Jester dataset links (#2103 [https://github.com/open-mmlab/mmaction2/pull/2103])

	Fix doc link (#2131 [https://github.com/open-mmlab/mmaction2/pull/2131])

1.0.0rc1 (10/14/2022)

Highlights

	Support Video Swin Transformer

New Features

	Support Video Swin Transformer (#1939 [https://github.com/open-mmlab/mmaction2/pull/1939])

Improvements

	Add colab tutorial for 1.x (#1956 [https://github.com/open-mmlab/mmaction2/pull/1956])

	Support skeleton-based action recognition demo (#1920 [https://github.com/open-mmlab/mmaction2/pull/1920])

Bug Fixes

	Fix link in doc (#1986 [https://github.com/open-mmlab/mmaction2/pull/1986], #1967 [https://github.com/open-mmlab/mmaction2/pull/1967], #1951 [https://github.com/open-mmlab/mmaction2/pull/1951], #1926 [https://github.com/open-mmlab/mmaction2/pull/1926],#1944 [https://github.com/open-mmlab/mmaction2/pull/1944], #1944 [https://github.com/open-mmlab/mmaction2/pull/1944], #1927 [https://github.com/open-mmlab/mmaction2/pull/1927], #1925 [https://github.com/open-mmlab/mmaction2/pull/1925])

	Fix CI (#1987 [https://github.com/open-mmlab/mmaction2/pull/1987], #1930 [https://github.com/open-mmlab/mmaction2/pull/1930], #1923 [https://github.com/open-mmlab/mmaction2/pull/1923])

	Fix pre-commit hook config (#1971 [https://github.com/open-mmlab/mmaction2/pull/1971])

	Fix TIN config (#1912 [https://github.com/open-mmlab/mmaction2/pull/1912])

	Fix UT for BMN and BSN (#1966 [https://github.com/open-mmlab/mmaction2/pull/1966])

	Fix UT for Recognizer2D (#1937 [https://github.com/open-mmlab/mmaction2/pull/1937])

	Fix BSN and BMN configs for localization (#1913 [https://github.com/open-mmlab/mmaction2/pull/1913])

	Modeify ST-GCN configs (#1913 [https://github.com/open-mmlab/mmaction2/pull/1914])

	Fix typo in migration doc (#1931 [https://github.com/open-mmlab/mmaction2/pull/1931])

	Remove Onnx related tools (#1928 [https://github.com/open-mmlab/mmaction2/pull/1928])

	Update TANet readme (#1916 [https://github.com/open-mmlab/mmaction2/pull/1916], #1890 [https://github.com/open-mmlab/mmaction2/pull/1890])

	Update 2S-AGCN readme (#1915 [https://github.com/open-mmlab/mmaction2/pull/1915])

	Fix TSN configs (#1905 [https://github.com/open-mmlab/mmaction2/pull/1905])

	Fix configs for detection (#1903 [https://github.com/open-mmlab/mmaction2/pull/1903])

	Fix typo in TIN config (#1904 [https://github.com/open-mmlab/mmaction2/pull/1904])

	Fix PoseC3D readme (#1899 [https://github.com/open-mmlab/mmaction2/pull/1899])

	Fix ST-GCN configs (#1891 [https://github.com/open-mmlab/mmaction2/pull/1891])

	Fix audio recognition readme (#1898 [https://github.com/open-mmlab/mmaction2/pull/1898])

	Fix TSM readme (#1887 [https://github.com/open-mmlab/mmaction2/pull/1887])

	Fix SlowOnly readme (#1889 [https://github.com/open-mmlab/mmaction2/pull/1889])

	Fix TRN readme (#1888 [https://github.com/open-mmlab/mmaction2/pull/1888])

	Fix typo in get_started doc (#1895 [https://github.com/open-mmlab/mmaction2/pull/1895])

1.0.0rc0 (09/01/2022)

We are excited to announce the release of MMAction2 v1.0.0rc0.
MMAction2 1.0.0beta is the first version of MMAction2 1.x, a part of the OpenMMLab 2.0 projects.
Built upon the new training engine [https://github.com/open-mmlab/mmengine].

Highlights

	New engines. MMAction2 1.x is based on MMEngine](https://github.com/open-mmlab/mmengine), which provides a general and powerful runner that allows more flexible customizations and significantly simplifies the entrypoints of high-level interfaces.

	Unified interfaces. As a part of the OpenMMLab 2.0 projects, MMAction2 1.x unifies and refactors the interfaces and internal logics of train, testing, datasets, models, evaluation, and visualization. All the OpenMMLab 2.0 projects share the same design in those interfaces and logics to allow the emergence of multi-task/modality algorithms.

	More documentation and tutorials. We add a bunch of documentation and tutorials to help users get started more smoothly. Read it here [https://github.com/open-mmlab/mmaction2/blob/1.x/docs/en/migration.md].

Breaking Changes

In this release, we made lots of major refactoring and modifications. Please refer to the migration guide for details and migration instructions.

0.24.0 (05/05/2022)

Highlights

	Support different seeds

New Features

	Add lateral norm in multigrid config (#1567 [https://github.com/open-mmlab/mmaction2/pull/1567])

	Add openpose 25 joints in graph config (#1578 [https://github.com/open-mmlab/mmaction2/pull/1578])

	Support MLU Backend (#1608 [https://github.com/open-mmlab/mmaction2/pull/1608])

Bug and Typo Fixes

	Fix local_rank (#1558 [https://github.com/open-mmlab/mmaction2/pull/1558])

	Fix install typo (#1571 [https://github.com/open-mmlab/mmaction2/pull/1571])

	Fix the inference API doc (#1580 [https://github.com/open-mmlab/mmaction2/pull/1580])

	Fix zh-CN demo.md and getting_started.md (#1587 [https://github.com/open-mmlab/mmaction2/pull/1587])

	Remove Recommonmark (#1595 [https://github.com/open-mmlab/mmaction2/pull/1595])

	Fix inference with ndarray (#1603 [https://github.com/open-mmlab/mmaction2/pull/1603])

	Fix the log error when IterBasedRunner is used (#1606 [https://github.com/open-mmlab/mmaction2/pull/1606])

0.23.0 (04/01/2022)

Highlights

	Support different seeds

	Provide multi-node training & testing script

	Update error log

New Features

	Support different seeds(#1502 [https://github.com/open-mmlab/mmaction2/pull/1502])

	Provide multi-node training & testing script(#1521 [https://github.com/open-mmlab/mmaction2/pull/1521])

	Update error log(#1546 [https://github.com/open-mmlab/mmaction2/pull/1546])

Documentations

	Update gpus in Slowfast readme(#1497 [https://github.com/open-mmlab/mmaction2/pull/1497])

	Fix work_dir in multigrid config(#1498 [https://github.com/open-mmlab/mmaction2/pull/1498])

	Add sub bn docs(#1503 [https://github.com/open-mmlab/mmaction2/pull/1503])

	Add shortcycle sampler docs(#1513 [https://github.com/open-mmlab/mmaction2/pull/1513])

	Update Windows Declaration(#1520 [https://github.com/open-mmlab/mmaction2/pull/1520])

	Update the link for ST-GCN(#1544 [https://github.com/open-mmlab/mmaction2/pull/1544])

	Update install commands(#1549 [https://github.com/open-mmlab/mmaction2/pull/1549])

Bug and Typo Fixes

	Update colab tutorial install cmds(#1522 [https://github.com/open-mmlab/mmaction2/pull/1522])

	Fix num_iters_per_epoch in analyze_logs.py(#1530 [https://github.com/open-mmlab/mmaction2/pull/1530])

	Fix distributed_sampler(#1532 [https://github.com/open-mmlab/mmaction2/pull/1532])

	Fix cd dir error(#1545 [https://github.com/open-mmlab/mmaction2/pull/1545])

	Update arg names(#1548 [https://github.com/open-mmlab/mmaction2/pull/1548])

ModelZoo

0.22.0 (03/05/2022)

Highlights

	Support Multigrid training strategy

	Support CPU training

	Support audio demo

	Support topk customizing in models/heads/base.py

New Features

	Support Multigrid training strategy(#1378 [https://github.com/open-mmlab/mmaction2/pull/1378])

	Support STGCN in demo_skeleton.py(#1391 [https://github.com/open-mmlab/mmaction2/pull/1391])

	Support CPU training(#1407 [https://github.com/open-mmlab/mmaction2/pull/1407])

	Support audio demo(#1425 [https://github.com/open-mmlab/mmaction2/pull/1425])

	Support topk customizing in models/heads/base.py(#1452 [https://github.com/open-mmlab/mmaction2/pull/1452])

Documentations

	Add OpenMMLab platform(#1393 [https://github.com/open-mmlab/mmaction2/pull/1393])

	Update links(#1394 [https://github.com/open-mmlab/mmaction2/pull/1394])

	Update readme in configs(#1404 [https://github.com/open-mmlab/mmaction2/pull/1404])

	Update instructions to install mmcv-full(#1426 [https://github.com/open-mmlab/mmaction2/pull/1426])

	Add shortcut(#1433 [https://github.com/open-mmlab/mmaction2/pull/1433])

	Update modelzoo(#1439 [https://github.com/open-mmlab/mmaction2/pull/1439])

	add video_structuralize in readme(#1455 [https://github.com/open-mmlab/mmaction2/pull/1455])

	Update OpenMMLab repo information(#1482 [https://github.com/open-mmlab/mmaction2/pull/1482])

Bug and Typo Fixes

	Update train.py(#1375 [https://github.com/open-mmlab/mmaction2/pull/1375])

	Fix printout bug(#1382)

	Update multi processing setting(#1395 [https://github.com/open-mmlab/mmaction2/pull/1395])

	Setup multi processing both in train and test(#1405 [https://github.com/open-mmlab/mmaction2/pull/1405])

	Fix bug in nondistributed multi-gpu training(#1406 [https://github.com/open-mmlab/mmaction2/pull/1406])

	Add variable fps in ava_dataset.py(#1409 [https://github.com/open-mmlab/mmaction2/pull/1409])

	Only support distributed training(#1414 [https://github.com/open-mmlab/mmaction2/pull/1414])

	Set test_mode for AVA configs(#1432 [https://github.com/open-mmlab/mmaction2/pull/1432])

	Support single label(#1434 [https://github.com/open-mmlab/mmaction2/pull/1434])

	Add check copyright(#1447 [https://github.com/open-mmlab/mmaction2/pull/1447])

	Support Windows CI(#1448 [https://github.com/open-mmlab/mmaction2/pull/1448])

	Fix wrong device of class_weight in models/losses/cross_entropy_loss.py(#1457 [https://github.com/open-mmlab/mmaction2/pull/1457])

	Fix bug caused by distributed(#1459 [https://github.com/open-mmlab/mmaction2/pull/1459])

	Update readme(#1460 [https://github.com/open-mmlab/mmaction2/pull/1460])

	Fix lint caused by colab automatic upload(#1461 [https://github.com/open-mmlab/mmaction2/pull/1461])

	Refine CI(#1471 [https://github.com/open-mmlab/mmaction2/pull/1471])

	Update pre-commit(#1474 [https://github.com/open-mmlab/mmaction2/pull/1474])

	Add deprecation message for deploy tool(#1483 [https://github.com/open-mmlab/mmaction2/pull/1483])

ModelZoo

	Support slowfast_steplr(#1421 [https://github.com/open-mmlab/mmaction2/pull/1421])

0.21.0 (31/12/2021)

Highlights

	Support 2s-AGCN

	Support publish models in Windows

	Improve some sthv1 related models

	Support BABEL

New Features

	Support 2s-AGCN(#1248 [https://github.com/open-mmlab/mmaction2/pull/1248])

	Support skip postproc in ntu_pose_extraction(#1295 [https://github.com/open-mmlab/mmaction2/pull/1295])

	Support publish models in Windows(#1325 [https://github.com/open-mmlab/mmaction2/pull/1325])

	Add copyright checkhook in pre-commit-config(#1344 [https://github.com/open-mmlab/mmaction2/pull/1344])

Documentations

	Add MMFlow (#1273 [https://github.com/open-mmlab/mmaction2/pull/1273])

	Revise README.md and add projects.md (#1286 [https://github.com/open-mmlab/mmaction2/pull/1286])

	Add 2s-AGCN in Updates(#1289 [https://github.com/open-mmlab/mmaction2/pull/1289])

	Add MMFewShot(#1300 [https://github.com/open-mmlab/mmaction2/pull/1300])

	Add MMHuman3d(#1304 [https://github.com/open-mmlab/mmaction2/pull/1304])

	Update pre-commit(#1313 [https://github.com/open-mmlab/mmaction2/pull/1313])

	Use share menu from the theme instead(#1328 [https://github.com/open-mmlab/mmaction2/pull/1328])

	Update installation command(#1340 [https://github.com/open-mmlab/mmaction2/pull/1340])

Bug and Typo Fixes

	Update the inference part in notebooks(#1256 [https://github.com/open-mmlab/mmaction2/pull/1256])

	Update the map_location(#1262)

	Fix bug that start_index is not used in RawFrameDecode(#1278 [https://github.com/open-mmlab/mmaction2/pull/1278])

	Fix bug in init_random_seed(#1282 [https://github.com/open-mmlab/mmaction2/pull/1282])

	Fix bug in setup.py(#1303 [https://github.com/open-mmlab/mmaction2/pull/1303])

	Fix interrogate error in workflows(#1305 [https://github.com/open-mmlab/mmaction2/pull/1305])

	Fix typo in slowfast config(#1309 [https://github.com/open-mmlab/mmaction2/pull/1309])

	Cancel previous runs that are not completed(#1327 [https://github.com/open-mmlab/mmaction2/pull/1327])

	Fix missing skip_postproc parameter(#1347 [https://github.com/open-mmlab/mmaction2/pull/1347])

	Update ssn.py(#1355 [https://github.com/open-mmlab/mmaction2/pull/1355])

	Use latest youtube-dl(#1357 [https://github.com/open-mmlab/mmaction2/pull/1357])

	Fix test-best(#1362 [https://github.com/open-mmlab/mmaction2/pull/1362])

ModelZoo

	Improve some sthv1 related models(#1306 [https://github.com/open-mmlab/mmaction2/pull/1306])

	Support BABEL(#1332 [https://github.com/open-mmlab/mmaction2/pull/1332])

0.20.0 (07/10/2021)

Highlights

	Support TorchServe

	Add video structuralize demo

	Support using 3D skeletons for skeleton-based action recognition

	Benchmark PoseC3D on UCF and HMDB

New Features

	Support TorchServe (#1212 [https://github.com/open-mmlab/mmaction2/pull/1212])

	Support 3D skeletons pre-processing (#1218 [https://github.com/open-mmlab/mmaction2/pull/1218])

	Support video structuralize demo (#1197 [https://github.com/open-mmlab/mmaction2/pull/1197])

Documentations

	Revise README.md and add projects.md (#1214 [https://github.com/open-mmlab/mmaction2/pull/1214])

	Add CN docs for Skeleton dataset, PoseC3D and ST-GCN (#1228 [https://github.com/open-mmlab/mmaction2/pull/1228], #1237 [https://github.com/open-mmlab/mmaction2/pull/1237], #1236 [https://github.com/open-mmlab/mmaction2/pull/1236])

	Add tutorial for custom dataset training for skeleton-based action recognition (#1234 [https://github.com/open-mmlab/mmaction2/pull/1234])

Bug and Typo Fixes

	Fix tutorial link (#1219 [https://github.com/open-mmlab/mmaction2/pull/1219])

	Fix GYM links (#1224 [https://github.com/open-mmlab/mmaction2/pull/1224])

ModelZoo

	Benchmark PoseC3D on UCF and HMDB (#1223 [https://github.com/open-mmlab/mmaction2/pull/1223])

	Add ST-GCN + 3D skeleton model for NTU60-XSub (#1236 [https://github.com/open-mmlab/mmaction2/pull/1236])

0.19.0 (07/10/2021)

Highlights

	Support ST-GCN

	Refactor the inference API

	Add code spell check hook

New Features

	Support ST-GCN (#1123 [https://github.com/open-mmlab/mmaction2/pull/1123])

Improvement

	Add label maps for every dataset (#1127 [https://github.com/open-mmlab/mmaction2/pull/1127])

	Remove useless code MultiGroupCrop (#1180 [https://github.com/open-mmlab/mmaction2/pull/1180])

	Refactor Inference API (#1191 [https://github.com/open-mmlab/mmaction2/pull/1191])

	Add code spell check hook (#1208 [https://github.com/open-mmlab/mmaction2/pull/1208])

	Use docker in CI (#1159 [https://github.com/open-mmlab/mmaction2/pull/1159])

Documentations

	Update metafiles to new OpenMMLAB protocols (#1134 [https://github.com/open-mmlab/mmaction2/pull/1134])

	Switch to new doc style (#1160 [https://github.com/open-mmlab/mmaction2/pull/1160])

	Improve the ERROR message (#1203 [https://github.com/open-mmlab/mmaction2/pull/1203])

	Fix invalid URL in getting_started (#1169 [https://github.com/open-mmlab/mmaction2/pull/1169])

Bug and Typo Fixes

	Compatible with new MMClassification (#1139 [https://github.com/open-mmlab/mmaction2/pull/1139])

	Add missing runtime dependencies (#1144 [https://github.com/open-mmlab/mmaction2/pull/1144])

	Fix THUMOS tag proposals path (#1156 [https://github.com/open-mmlab/mmaction2/pull/1156])

	Fix LoadHVULabel (#1194 [https://github.com/open-mmlab/mmaction2/pull/1194])

	Switch the default value of persistent_workers to False (#1202 [https://github.com/open-mmlab/mmaction2/pull/1202])

	Fix _freeze_stages for MobileNetV2 (#1193 [https://github.com/open-mmlab/mmaction2/pull/1193])

	Fix resume when building rawframes (#1150 [https://github.com/open-mmlab/mmaction2/pull/1150])

	Fix device bug for class weight (#1188 [https://github.com/open-mmlab/mmaction2/pull/1188])

	Correct Arg names in extract_audio.py (#1148 [https://github.com/open-mmlab/mmaction2/pull/1148])

ModelZoo

	Add TSM-MobileNetV2 ported from TSM (#1163 [https://github.com/open-mmlab/mmaction2/pull/1163])

	Add ST-GCN for NTURGB+D-XSub-60 (#1123 [https://github.com/open-mmlab/mmaction2/pull/1123])

0.18.0 (02/09/2021)

Improvement

	Add CopyRight (#1099 [https://github.com/open-mmlab/mmaction2/pull/1099])

	Support NTU Pose Extraction (#1076 [https://github.com/open-mmlab/mmaction2/pull/1076])

	Support Caching in RawFrameDecode (#1078 [https://github.com/open-mmlab/mmaction2/pull/1078])

	Add citations & Support python3.9 CI & Use fixed-version sphinx (#1125 [https://github.com/open-mmlab/mmaction2/pull/1125])

Documentations

	Add Descriptions of PoseC3D dataset (#1053 [https://github.com/open-mmlab/mmaction2/pull/1053])

Bug and Typo Fixes

	Fix SSV2 checkpoints (#1101 [https://github.com/open-mmlab/mmaction2/pull/1101])

	Fix CSN normalization (#1116 [https://github.com/open-mmlab/mmaction2/pull/1116])

	Fix typo (#1121 [https://github.com/open-mmlab/mmaction2/pull/1121])

	Fix new_crop_quadruple bug (#1108 [https://github.com/open-mmlab/mmaction2/pull/1108])

0.17.0 (03/08/2021)

Highlights

	Support PyTorch 1.9

	Support Pytorchvideo Transforms

	Support PreciseBN

New Features

	Support Pytorchvideo Transforms (#1008 [https://github.com/open-mmlab/mmaction2/pull/1008])

	Support PreciseBN (#1038 [https://github.com/open-mmlab/mmaction2/pull/1038])

Improvements

	Remove redundant augmentations in config files (#996 [https://github.com/open-mmlab/mmaction2/pull/996])

	Make resource directory to hold common resource pictures (#1011 [https://github.com/open-mmlab/mmaction2/pull/1011])

	Remove deprecated FrameSelector (#1010 [https://github.com/open-mmlab/mmaction2/pull/1010])

	Support Concat Dataset (#1000 [https://github.com/open-mmlab/mmaction2/pull/1000])

	Add to-mp4 option to resize_videos.py (#1021 [https://github.com/open-mmlab/mmaction2/pull/1021])

	Add option to keep tail frames (#1050 [https://github.com/open-mmlab/mmaction2/pull/1050])

	Update MIM support (#1061 [https://github.com/open-mmlab/mmaction2/pull/1061])

	Calculate Top-K accurate and inaccurate classes (#1047 [https://github.com/open-mmlab/mmaction2/pull/1047])

Bug and Typo Fixes

	Fix bug in PoseC3D demo (#1009 [https://github.com/open-mmlab/mmaction2/pull/1009])

	Fix some problems in resize_videos.py (#1012 [https://github.com/open-mmlab/mmaction2/pull/1012])

	Support torch1.9 (#1015 [https://github.com/open-mmlab/mmaction2/pull/1015])

	Remove redundant code in CI (#1046 [https://github.com/open-mmlab/mmaction2/pull/1046])

	Fix bug about persistent_workers (#1044 [https://github.com/open-mmlab/mmaction2/pull/1044])

	Support TimeSformer feature extraction (#1035 [https://github.com/open-mmlab/mmaction2/pull/1035])

	Fix ColorJitter (#1025 [https://github.com/open-mmlab/mmaction2/pull/1025])

ModelZoo

	Add TSM-R50 sthv1 models trained by PytorchVideo RandAugment and AugMix (#1008 [https://github.com/open-mmlab/mmaction2/pull/1008])

	Update SlowOnly SthV1 checkpoints (#1034 [https://github.com/open-mmlab/mmaction2/pull/1034])

	Add SlowOnly Kinetics400 checkpoints trained with Precise-BN (#1038 [https://github.com/open-mmlab/mmaction2/pull/1038])

	Add CSN-R50 from scratch checkpoints (#1045 [https://github.com/open-mmlab/mmaction2/pull/1045])

	TPN Kinetics-400 Checkpoints trained with the new ColorJitter (#1025 [https://github.com/open-mmlab/mmaction2/pull/1025])

Documentation

	Add Chinese translation of feature_extraction.md (#1020 [https://github.com/open-mmlab/mmaction2/pull/1020])

	Fix the code snippet in getting_started.md (#1023 [https://github.com/open-mmlab/mmaction2/pull/1023])

	Fix TANet config table (#1028 [https://github.com/open-mmlab/mmaction2/pull/1028])

	Add description to PoseC3D dataset (#1053 [https://github.com/open-mmlab/mmaction2/pull/1053])

0.16.0 (01/07/2021)

Highlights

	Support using backbone from pytorch-image-models(timm)

	Support PIMS Decoder

	Demo for skeleton-based action recognition

	Support Timesformer

New Features

	Support using backbones from pytorch-image-models(timm) for TSN (#880 [https://github.com/open-mmlab/mmaction2/pull/880])

	Support torchvision transformations in preprocessing pipelines (#972 [https://github.com/open-mmlab/mmaction2/pull/972])

	Demo for skeleton-based action recognition (#972 [https://github.com/open-mmlab/mmaction2/pull/972])

	Support Timesformer (#839 [https://github.com/open-mmlab/mmaction2/pull/839])

Improvements

	Add a tool to find invalid videos (#907 [https://github.com/open-mmlab/mmaction2/pull/907], #950 [https://github.com/open-mmlab/mmaction2/pull/950])

	Add an option to specify spectrogram_type (#909 [https://github.com/open-mmlab/mmaction2/pull/909])

	Add json output to video demo (#906 [https://github.com/open-mmlab/mmaction2/pull/906])

	Add MIM related docs (#918 [https://github.com/open-mmlab/mmaction2/pull/918])

	Rename lr to scheduler (#916 [https://github.com/open-mmlab/mmaction2/pull/916])

	Support --cfg-options for demos (#911 [https://github.com/open-mmlab/mmaction2/pull/911])

	Support number counting for flow-wise filename template (#922 [https://github.com/open-mmlab/mmaction2/pull/922])

	Add Chinese tutorial (#941 [https://github.com/open-mmlab/mmaction2/pull/941])

	Change ResNet3D default values (#939 [https://github.com/open-mmlab/mmaction2/pull/939])

	Adjust script structure (#935 [https://github.com/open-mmlab/mmaction2/pull/935])

	Add font color to args in long_video_demo (#947 [https://github.com/open-mmlab/mmaction2/pull/947])

	Polish code style with Pylint (#908 [https://github.com/open-mmlab/mmaction2/pull/908])

	Support PIMS Decoder (#946 [https://github.com/open-mmlab/mmaction2/pull/946])

	Improve Metafiles (#956 [https://github.com/open-mmlab/mmaction2/pull/956], #979 [https://github.com/open-mmlab/mmaction2/pull/979], #966 [https://github.com/open-mmlab/mmaction2/pull/966])

	Add links to download Kinetics400 validation (#920 [https://github.com/open-mmlab/mmaction2/pull/920])

	Audit the usage of shutil.rmtree (#943 [https://github.com/open-mmlab/mmaction2/pull/943])

	Polish localizer related codes(#913 [https://github.com/open-mmlab/mmaction2/pull/913])

Bug and Typo Fixes

	Fix spatiotemporal detection demo (#899 [https://github.com/open-mmlab/mmaction2/pull/899])

	Fix docstring for 3D inflate (#925 [https://github.com/open-mmlab/mmaction2/pull/925])

	Fix bug of writing text to video with TextClip (#952 [https://github.com/open-mmlab/mmaction2/pull/952])

	Fix mmcv install in CI (#977 [https://github.com/open-mmlab/mmaction2/pull/977])

ModelZoo

	Add TSN with Swin Transformer backbone as an example for using pytorch-image-models(timm) backbones (#880 [https://github.com/open-mmlab/mmaction2/pull/880])

	Port CSN checkpoints from VMZ (#945 [https://github.com/open-mmlab/mmaction2/pull/945])

	Release various checkpoints for UCF101, HMDB51 and Sthv1 (#938 [https://github.com/open-mmlab/mmaction2/pull/938])

	Support Timesformer (#839 [https://github.com/open-mmlab/mmaction2/pull/839])

	Update TSM modelzoo (#981 [https://github.com/open-mmlab/mmaction2/pull/981])

0.15.0 (31/05/2021)

Highlights

	Support PoseC3D

	Support ACRN

	Support MIM

New Features

	Support PoseC3D (#786 [https://github.com/open-mmlab/mmaction2/pull/786], #890 [https://github.com/open-mmlab/mmaction2/pull/890])

	Support MIM (#870 [https://github.com/open-mmlab/mmaction2/pull/870])

	Support ACRN and Focal Loss (#891 [https://github.com/open-mmlab/mmaction2/pull/891])

	Support Jester dataset (#864 [https://github.com/open-mmlab/mmaction2/pull/864])

Improvements

	Add metric_options for evaluation to docs (#873 [https://github.com/open-mmlab/mmaction2/pull/873])

	Support creating a new label map based on custom classes for demos about spatio temporal demo (#879 [https://github.com/open-mmlab/mmaction2/pull/879])

	Improve document about AVA dataset preparation (#878 [https://github.com/open-mmlab/mmaction2/pull/878])

	Provide a script to extract clip-level feature (#856 [https://github.com/open-mmlab/mmaction2/pull/856])

Bug and Typo Fixes

	Fix issues about resume (#877 [https://github.com/open-mmlab/mmaction2/pull/877], #878 [https://github.com/open-mmlab/mmaction2/pull/878])

	Correct the key name of eval_results dictionary for metric ‘mmit_mean_average_precision’ (#885 [https://github.com/open-mmlab/mmaction2/pull/885])

ModelZoo

	Support Jester dataset (#864 [https://github.com/open-mmlab/mmaction2/pull/864])

	Support ACRN and Focal Loss (#891 [https://github.com/open-mmlab/mmaction2/pull/891])

0.14.0 (30/04/2021)

Highlights

	Support TRN

	Support Diving48

New Features

	Support TRN (#755 [https://github.com/open-mmlab/mmaction2/pull/755])

	Support Diving48 (#835 [https://github.com/open-mmlab/mmaction2/pull/835])

	Support Webcam Demo for Spatio-temporal Action Detection Models (#795 [https://github.com/open-mmlab/mmaction2/pull/795])

Improvements

	Add softmax option for pytorch2onnx tool (#781 [https://github.com/open-mmlab/mmaction2/pull/781])

	Support TRN (#755 [https://github.com/open-mmlab/mmaction2/pull/755])

	Test with onnx models and TensorRT engines (#758 [https://github.com/open-mmlab/mmaction2/pull/758])

	Speed up AVA Testing (#784 [https://github.com/open-mmlab/mmaction2/pull/784])

	Add self.with_neck attribute (#796 [https://github.com/open-mmlab/mmaction2/pull/796])

	Update installation document (#798 [https://github.com/open-mmlab/mmaction2/pull/798])

	Use a random master port (#809 [https://github.com/open-mmlab/mmaction2/pull/8098])

	Update AVA processing data document (#801 [https://github.com/open-mmlab/mmaction2/pull/801])

	Refactor spatio-temporal augmentation (#782 [https://github.com/open-mmlab/mmaction2/pull/782])

	Add QR code in CN README (#812 [https://github.com/open-mmlab/mmaction2/pull/812])

	Add Alternative way to download Kinetics (#817 [https://github.com/open-mmlab/mmaction2/pull/817], #822 [https://github.com/open-mmlab/mmaction2/pull/822])

	Refactor Sampler (#790 [https://github.com/open-mmlab/mmaction2/pull/790])

	Use EvalHook in MMCV with backward compatibility (#793 [https://github.com/open-mmlab/mmaction2/pull/793])

	Use MMCV Model Registry (#843 [https://github.com/open-mmlab/mmaction2/pull/843])

Bug and Typo Fixes

	Fix a bug in pytorch2onnx.py when num_classes <= 4 (#800 [https://github.com/open-mmlab/mmaction2/pull/800], #824 [https://github.com/open-mmlab/mmaction2/pull/824])

	Fix demo_spatiotemporal_det.py error (#803 [https://github.com/open-mmlab/mmaction2/pull/803], #805 [https://github.com/open-mmlab/mmaction2/pull/805])

	Fix loading config bugs when resume (#820 [https://github.com/open-mmlab/mmaction2/pull/820])

	Make HMDB51 annotation generation more robust (#811 [https://github.com/open-mmlab/mmaction2/pull/811])

ModelZoo

	Update checkpoint for 256 height in something-V2 (#789 [https://github.com/open-mmlab/mmaction2/pull/789])

	Support Diving48 (#835 [https://github.com/open-mmlab/mmaction2/pull/835])

0.13.0 (31/03/2021)

Highlights

	Support LFB

	Support using backbone from MMCls/TorchVision

	Add Chinese documentation

New Features

	Support LFB (#553 [https://github.com/open-mmlab/mmaction2/pull/553])

	Support using backbones from MMCls for TSN (#679 [https://github.com/open-mmlab/mmaction2/pull/679])

	Support using backbones from TorchVision for TSN (#720 [https://github.com/open-mmlab/mmaction2/pull/720])

	Support Mixup and Cutmix for recognizers (#681 [https://github.com/open-mmlab/mmaction2/pull/681])

	Support Chinese documentation (#665 [https://github.com/open-mmlab/mmaction2/pull/665], #680 [https://github.com/open-mmlab/mmaction2/pull/680], #689 [https://github.com/open-mmlab/mmaction2/pull/689], #701 [https://github.com/open-mmlab/mmaction2/pull/701], #702 [https://github.com/open-mmlab/mmaction2/pull/702], #703 [https://github.com/open-mmlab/mmaction2/pull/703], #706 [https://github.com/open-mmlab/mmaction2/pull/706], #716 [https://github.com/open-mmlab/mmaction2/pull/716], #717 [https://github.com/open-mmlab/mmaction2/pull/717], #731 [https://github.com/open-mmlab/mmaction2/pull/731], #733 [https://github.com/open-mmlab/mmaction2/pull/733], #735 [https://github.com/open-mmlab/mmaction2/pull/735], #736 [https://github.com/open-mmlab/mmaction2/pull/736], #737 [https://github.com/open-mmlab/mmaction2/pull/737], #738 [https://github.com/open-mmlab/mmaction2/pull/738], #739 [https://github.com/open-mmlab/mmaction2/pull/739], #740 [https://github.com/open-mmlab/mmaction2/pull/740], #742 [https://github.com/open-mmlab/mmaction2/pull/742], #752 [https://github.com/open-mmlab/mmaction2/pull/752], #759 [https://github.com/open-mmlab/mmaction2/pull/759], #761 [https://github.com/open-mmlab/mmaction2/pull/761], #772 [https://github.com/open-mmlab/mmaction2/pull/772], #775 [https://github.com/open-mmlab/mmaction2/pull/775])

Improvements

	Add slowfast config/json/log/ckpt for training custom classes of AVA (#678 [https://github.com/open-mmlab/mmaction2/pull/678])

	Set RandAugment as Imgaug default transforms (#585 [https://github.com/open-mmlab/mmaction2/pull/585])

	Add --test-last & --test-best for tools/train.py to test checkpoints after training (#608 [https://github.com/open-mmlab/mmaction2/pull/608])

	Add fcn_testing in TPN (#684 [https://github.com/open-mmlab/mmaction2/pull/684])

	Remove redundant recall functions (#741 [https://github.com/open-mmlab/mmaction2/pull/741])

	Recursively remove pretrained step for testing (#695 [https://github.com/open-mmlab/mmaction2/pull/695])

	Improve demo by limiting inference fps (#668 [https://github.com/open-mmlab/mmaction2/pull/668])

Bug and Typo Fixes

	Fix a bug about multi-class in VideoDataset (#723 [https://github.com/open-mmlab/mmaction2/pull/678])

	Reverse key-value in anet filelist generation (#686 [https://github.com/open-mmlab/mmaction2/pull/686])

	Fix flow norm cfg typo (#693 [https://github.com/open-mmlab/mmaction2/pull/693])

ModelZoo

	Add LFB for AVA2.1 (#553 [https://github.com/open-mmlab/mmaction2/pull/553])

	Add TSN with ResNeXt-101-32x4d backbone as an example for using MMCls backbones (#679 [https://github.com/open-mmlab/mmaction2/pull/679])

	Add TSN with Densenet161 backbone as an example for using TorchVision backbones (#720 [https://github.com/open-mmlab/mmaction2/pull/720])

	Add slowonly_nl_embedded_gaussian_r50_4x16x1_150e_kinetics400_rgb (#690 [https://github.com/open-mmlab/mmaction2/pull/690])

	Add slowonly_nl_embedded_gaussian_r50_8x8x1_150e_kinetics400_rgb (#704 [https://github.com/open-mmlab/mmaction2/pull/704])

	Add slowonly_nl_kinetics_pretrained_r50_4x16x1(8x8x1)_20e_ava_rgb (#730 [https://github.com/open-mmlab/mmaction2/pull/730])

0.12.0 (28/02/2021)

Highlights

	Support TSM-MobileNetV2

	Support TANet

	Support GPU Normalize

New Features

	Support TSM-MobileNetV2 (#415 [https://github.com/open-mmlab/mmaction2/pull/415])

	Support flip with label mapping (#591 [https://github.com/open-mmlab/mmaction2/pull/591])

	Add seed option for sampler (#642 [https://github.com/open-mmlab/mmaction2/pull/642])

	Support GPU Normalize (#586 [https://github.com/open-mmlab/mmaction2/pull/586])

	Support TANet (#595 [https://github.com/open-mmlab/mmaction2/pull/595])

Improvements

	Training custom classes of ava dataset (#555 [https://github.com/open-mmlab/mmaction2/pull/555])

	Add CN README in homepage (#592 [https://github.com/open-mmlab/mmaction2/pull/592], #594 [https://github.com/open-mmlab/mmaction2/pull/594])

	Support soft label for CrossEntropyLoss (#625 [https://github.com/open-mmlab/mmaction2/pull/625])

	Refactor config: Specify train_cfg and test_cfg in model (#629 [https://github.com/open-mmlab/mmaction2/pull/629])

	Provide an alternative way to download older kinetics annotations (#597 [https://github.com/open-mmlab/mmaction2/pull/597])

	Update FAQ for

	1). data pipeline about video and frames (#598 [https://github.com/open-mmlab/mmaction2/pull/598])

	2). how to show results (#598 [https://github.com/open-mmlab/mmaction2/pull/598])

	3). batch size setting for batchnorm (#657 [https://github.com/open-mmlab/mmaction2/pull/657])

	4). how to fix stages of backbone when finetuning models (#658 [https://github.com/open-mmlab/mmaction2/pull/658])

	Modify default value of save_best (#600 [https://github.com/open-mmlab/mmaction2/pull/600])

	Use BibTex rather than latex in markdown (#607 [https://github.com/open-mmlab/mmaction2/pull/607])

	Add warnings of uninstalling mmdet and supplementary documents (#624 [https://github.com/open-mmlab/mmaction2/pull/624])

	Support soft label for CrossEntropyLoss (#625 [https://github.com/open-mmlab/mmaction2/pull/625])

Bug and Typo Fixes

	Fix value of pem_low_temporal_iou_threshold in BSN (#556 [https://github.com/open-mmlab/mmaction2/pull/556])

	Fix ActivityNet download script (#601 [https://github.com/open-mmlab/mmaction2/pull/601])

ModelZoo

	Add TSM-MobileNetV2 for Kinetics400 (#415 [https://github.com/open-mmlab/mmaction2/pull/415])

	Add deeper SlowFast models (#605 [https://github.com/open-mmlab/mmaction2/pull/605])

0.11.0 (31/01/2021)

Highlights

	Support imgaug

	Support spatial temporal demo

	Refactor EvalHook, config structure, unittest structure

New Features

	Support imgaug [https://imgaug.readthedocs.io/en/latest/index.html] for augmentations in the data pipeline (#492 [https://github.com/open-mmlab/mmaction2/pull/492])

	Support setting max_testing_views for extremely large models to save GPU memory used (#511 [https://github.com/open-mmlab/mmaction2/pull/511])

	Add spatial temporal demo (#547 [https://github.com/open-mmlab/mmaction2/pull/547], #566 [https://github.com/open-mmlab/mmaction2/pull/566])

Improvements

	Refactor EvalHook (#395 [https://github.com/open-mmlab/mmaction2/pull/395])

	Refactor AVA hook (#567 [https://github.com/open-mmlab/mmaction2/pull/567])

	Add repo citation (#545 [https://github.com/open-mmlab/mmaction2/pull/545])

	Add dataset size of Kinetics400 (#503 [https://github.com/open-mmlab/mmaction2/pull/503])

	Add lazy operation docs (#504 [https://github.com/open-mmlab/mmaction2/pull/504])

	Add class_weight for CrossEntropyLoss and BCELossWithLogits (#509 [https://github.com/open-mmlab/mmaction2/pull/509])

	add some explanation about the resampling in slowfast (#502 [https://github.com/open-mmlab/mmaction2/pull/502])

	Modify paper title in README.md (#512 [https://github.com/open-mmlab/mmaction2/pull/512])

	Add alternative ways to download Kinetics (#521 [https://github.com/open-mmlab/mmaction2/pull/521])

	Add OpenMMLab projects link in README (#530 [https://github.com/open-mmlab/mmaction2/pull/530])

	Change default preprocessing to shortedge to 256 (#538 [https://github.com/open-mmlab/mmaction2/pull/538])

	Add config tag in dataset README (#540 [https://github.com/open-mmlab/mmaction2/pull/540])

	Add solution for markdownlint installation issue (#497 [https://github.com/open-mmlab/mmaction2/pull/497])

	Add dataset overview in readthedocs (#548 [https://github.com/open-mmlab/mmaction2/pull/548])

	Modify the trigger mode of the warnings of missing mmdet (#583 [https://github.com/open-mmlab/mmaction2/pull/583])

	Refactor config structure (#488 [https://github.com/open-mmlab/mmaction2/pull/488], #572 [https://github.com/open-mmlab/mmaction2/pull/572])

	Refactor unittest structure (#433 [https://github.com/open-mmlab/mmaction2/pull/433])

Bug and Typo Fixes

	Fix a bug about ava dataset validation (#527 [https://github.com/open-mmlab/mmaction2/pull/527])

	Fix a bug about ResNet pretrain weight initialization (#582 [https://github.com/open-mmlab/mmaction2/pull/582])

	Fix a bug in CI due to MMCV index (#495 [https://github.com/open-mmlab/mmaction2/pull/495])

	Remove invalid links of MiT and MMiT (#516 [https://github.com/open-mmlab/mmaction2/pull/516])

	Fix frame rate bug for AVA preparation (#576 [https://github.com/open-mmlab/mmaction2/pull/576])

ModelZoo

0.10.0 (31/12/2020)

Highlights

	Support Spatio-Temporal Action Detection (AVA)

	Support precise BN

New Features

	Support precise BN (#501 [https://github.com/open-mmlab/mmaction2/pull/501/])

	Support Spatio-Temporal Action Detection (AVA) (#351 [https://github.com/open-mmlab/mmaction2/pull/351])

	Support to return feature maps in inference_recognizer (#458 [https://github.com/open-mmlab/mmaction2/pull/458])

Improvements

	Add arg stride to long_video_demo.py, to make inference faster (#468 [https://github.com/open-mmlab/mmaction2/pull/468])

	Support training and testing for Spatio-Temporal Action Detection (#351 [https://github.com/open-mmlab/mmaction2/pull/351])

	Fix CI due to pip upgrade (#454 [https://github.com/open-mmlab/mmaction2/pull/454])

	Add markdown lint in pre-commit hook (#255 [https://github.com/open-mmlab/mmaction2/pull/225])

	Speed up confusion matrix calculation (#465 [https://github.com/open-mmlab/mmaction2/pull/465])

	Use title case in modelzoo statistics (#456 [https://github.com/open-mmlab/mmaction2/pull/456])

	Add FAQ documents for easy troubleshooting. (#413 [https://github.com/open-mmlab/mmaction2/pull/413], #420 [https://github.com/open-mmlab/mmaction2/pull/420], #439 [https://github.com/open-mmlab/mmaction2/pull/439])

	Support Spatio-Temporal Action Detection with context (#471 [https://github.com/open-mmlab/mmaction2/pull/471])

	Add class weight for CrossEntropyLoss and BCELossWithLogits (#509 [https://github.com/open-mmlab/mmaction2/pull/509])

	Add Lazy OPs docs (#504 [https://github.com/open-mmlab/mmaction2/pull/504])

Bug and Typo Fixes

	Fix typo in default argument of BaseHead (#446 [https://github.com/open-mmlab/mmaction2/pull/446])

	Fix potential bug about output_config overwrite (#463 [https://github.com/open-mmlab/mmaction2/pull/463])

ModelZoo

	Add SlowOnly, SlowFast for AVA2.1 (#351 [https://github.com/open-mmlab/mmaction2/pull/351])

0.9.0 (30/11/2020)

Highlights

	Support GradCAM utils for recognizers

	Support ResNet Audio model

New Features

	Automatically add modelzoo statistics to readthedocs (#327 [https://github.com/open-mmlab/mmaction2/pull/327])

	Support GYM99 (#331 [https://github.com/open-mmlab/mmaction2/pull/331], #336 [https://github.com/open-mmlab/mmaction2/pull/336])

	Add AudioOnly Pathway from AVSlowFast. (#355 [https://github.com/open-mmlab/mmaction2/pull/355])

	Add GradCAM utils for recognizer (#324 [https://github.com/open-mmlab/mmaction2/pull/324])

	Add print config script (#345 [https://github.com/open-mmlab/mmaction2/pull/345])

	Add online motion vector decoder (#291 [https://github.com/open-mmlab/mmaction2/pull/291])

Improvements

	Support PyTorch 1.7 in CI (#312 [https://github.com/open-mmlab/mmaction2/pull/312])

	Support to predict different labels in a long video (#274 [https://github.com/open-mmlab/mmaction2/pull/274])

	Update docs bout test crops (#359 [https://github.com/open-mmlab/mmaction2/pull/359])

	Polish code format using pylint manually (#338 [https://github.com/open-mmlab/mmaction2/pull/338])

	Update unittest coverage (#358 [https://github.com/open-mmlab/mmaction2/pull/358], #322 [https://github.com/open-mmlab/mmaction2/pull/322], #325 [https://github.com/open-mmlab/mmaction2/pull/325])

	Add random seed for building filelists (#323 [https://github.com/open-mmlab/mmaction2/pull/323])

	Update colab tutorial (#367 [https://github.com/open-mmlab/mmaction2/pull/367])

	set default batch_size of evaluation and testing to 1 (#250 [https://github.com/open-mmlab/mmaction2/pull/250])

	Rename the preparation docs to README.md (#388 [https://github.com/open-mmlab/mmaction2/pull/388])

	Move docs about demo to demo/README.md (#329 [https://github.com/open-mmlab/mmaction2/pull/329])

	Remove redundant code in tools/test.py (#310 [https://github.com/open-mmlab/mmaction2/pull/310])

	Automatically calculate number of test clips for Recognizer2D (#359 [https://github.com/open-mmlab/mmaction2/pull/359])

Bug and Typo Fixes

	Fix rename Kinetics classnames bug (#384 [https://github.com/open-mmlab/mmaction2/pull/384])

	Fix a bug in BaseDataset when data_prefix is None (#314 [https://github.com/open-mmlab/mmaction2/pull/314])

	Fix a bug about tmp_folder in OpenCVInit (#357 [https://github.com/open-mmlab/mmaction2/pull/357])

	Fix get_thread_id when not using disk as backend (#354 [https://github.com/open-mmlab/mmaction2/pull/354], #357 [https://github.com/open-mmlab/mmaction2/pull/357])

	Fix the bug of HVU object num_classes from 1679 to 1678 (#307 [https://github.com/open-mmlab/mmaction2/pull/307])

	Fix typo in export_model.md (#399 [https://github.com/open-mmlab/mmaction2/pull/399])

	Fix OmniSource training configs (#321 [https://github.com/open-mmlab/mmaction2/pull/321])

	Fix Issue #306: Bug of SampleAVAFrames (#317 [https://github.com/open-mmlab/mmaction2/pull/317])

ModelZoo

	Add SlowOnly model for GYM99, both RGB and Flow (#336 [https://github.com/open-mmlab/mmaction2/pull/336])

	Add auto modelzoo statistics in readthedocs (#327 [https://github.com/open-mmlab/mmaction2/pull/327])

	Add TSN for HMDB51 pretrained on Kinetics400, Moments in Time and ImageNet. (#372 [https://github.com/open-mmlab/mmaction2/pull/372])

v0.8.0 (31/10/2020)

Highlights

	Support OmniSource [https://arxiv.org/abs/2003.13042]

	Support C3D

	Support video recognition with audio modality

	Support HVU

	Support X3D

New Features

	Support AVA dataset preparation (#266 [https://github.com/open-mmlab/mmaction2/pull/266])

	Support the training of video recognition dataset with multiple tag categories (#235 [https://github.com/open-mmlab/mmaction2/pull/235])

	Support joint training with multiple training datasets of multiple formats, including images, untrimmed videos, etc. (#242 [https://github.com/open-mmlab/mmaction2/pull/242])

	Support to specify a start epoch to conduct evaluation (#216 [https://github.com/open-mmlab/mmaction2/pull/216])

	Implement X3D models, support testing with model weights converted from SlowFast (#288 [https://github.com/open-mmlab/mmaction2/pull/288])

	Support specify a start epoch to conduct evaluation (#216 [https://github.com/open-mmlab/mmaction2/pull/216])

Improvements

	Set default values of ‘average_clips’ in each config file so that there is no need to set it explicitly during testing in most cases (#232 [https://github.com/open-mmlab/mmaction2/pull/232])

	Extend HVU datatools to generate individual file list for each tag category (#258 [https://github.com/open-mmlab/mmaction2/pull/258])

	Support data preparation for Kinetics-600 and Kinetics-700 (#254 [https://github.com/open-mmlab/mmaction2/pull/254])

	Use metric_dict to replace hardcoded arguments in evaluate function (#286 [https://github.com/open-mmlab/mmaction2/pull/286])

	Add cfg-options in arguments to override some settings in the used config for convenience (#212 [https://github.com/open-mmlab/mmaction2/pull/212])

	Rename the old evaluating protocol mean_average_precision as mmit_mean_average_precision since it is only used on MMIT and is not the mAP we usually talk about. Add mean_average_precision, which is the real mAP (#235 [https://github.com/open-mmlab/mmaction2/pull/235])

	Add accurate setting (Three crop * 2 clip) and report corresponding performance for TSM model (#241 [https://github.com/open-mmlab/mmaction2/pull/241])

	Add citations in each preparing_dataset.md in tools/data/dataset (#289 [https://github.com/open-mmlab/mmaction2/pull/289])

	Update the performance of audio-visual fusion on Kinetics-400 (#281 [https://github.com/open-mmlab/mmaction2/pull/281])

	Support data preparation of OmniSource web datasets, including GoogleImage, InsImage, InsVideo and KineticsRawVideo (#294 [https://github.com/open-mmlab/mmaction2/pull/294])

	Use metric_options dict to provide metric args in evaluate (#286 [https://github.com/open-mmlab/mmaction2/pull/286])

Bug Fixes

	Register FrameSelector in PIPELINES (#268 [https://github.com/open-mmlab/mmaction2/pull/268])

	Fix the potential bug for default value in dataset_setting (#245 [https://github.com/open-mmlab/mmaction2/pull/245])

	Fix multi-node dist test (#292 [https://github.com/open-mmlab/mmaction2/pull/292])

	Fix the data preparation bug for something-something dataset (#278 [https://github.com/open-mmlab/mmaction2/pull/278])

	Fix the invalid config url in slowonly README data benchmark (#249 [https://github.com/open-mmlab/mmaction2/pull/249])

	Validate that the performance of models trained with videos have no significant difference comparing to the performance of models trained with rawframes (#256 [https://github.com/open-mmlab/mmaction2/pull/256])

	Correct the img_norm_cfg used by TSN-3seg-R50 UCF-101 model, improve the Top-1 accuracy by 3% (#273 [https://github.com/open-mmlab/mmaction2/pull/273])

ModelZoo

	Add Baselines for Kinetics-600 and Kinetics-700, including TSN-R50-8seg and SlowOnly-R50-8x8 (#259 [https://github.com/open-mmlab/mmaction2/pull/259])

	Add OmniSource benchmark on MiniKineitcs (#296 [https://github.com/open-mmlab/mmaction2/pull/296])

	Add Baselines for HVU, including TSN-R18-8seg on 6 tag categories of HVU (#287 [https://github.com/open-mmlab/mmaction2/pull/287])

	Add X3D models ported from SlowFast [https://github.com/facebookresearch/SlowFast/] (#288 [https://github.com/open-mmlab/mmaction2/pull/288])

v0.7.0 (30/9/2020)

Highlights

	Support TPN

	Support JHMDB, UCF101-24, HVU dataset preparation

	support onnx model conversion

New Features

	Support the data pre-processing pipeline for the HVU Dataset (#277 [https://github.com/open-mmlab/mmaction2/pull/227/])

	Support real-time action recognition from web camera (#171 [https://github.com/open-mmlab/mmaction2/pull/171])

	Support onnx (#160 [https://github.com/open-mmlab/mmaction2/pull/160])

	Support UCF101-24 preparation (#219 [https://github.com/open-mmlab/mmaction2/pull/219])

	Support evaluating mAP for ActivityNet with CUHK17_activitynet_pred [http://activity-net.org/challenges/2017/evaluation.html] (#176 [https://github.com/open-mmlab/mmaction2/pull/176])

	Add the data pipeline for ActivityNet, including downloading videos, extracting RGB and Flow frames, finetuning TSN and extracting feature (#190 [https://github.com/open-mmlab/mmaction2/pull/190])

	Support JHMDB preparation (#220 [https://github.com/open-mmlab/mmaction2/pull/220])

ModelZoo

	Add finetuning setting for SlowOnly (#173 [https://github.com/open-mmlab/mmaction2/pull/173])

	Add TSN and SlowOnly models trained with OmniSource [https://arxiv.org/abs/2003.13042], which achieve 75.7% Top-1 with TSN-R50-3seg and 80.4% Top-1 with SlowOnly-R101-8x8 (#215 [https://github.com/open-mmlab/mmaction2/pull/215])

Improvements

	Support demo with video url (#165 [https://github.com/open-mmlab/mmaction2/pull/165])

	Support multi-batch when testing (#184 [https://github.com/open-mmlab/mmaction2/pull/184])

	Add tutorial for adding a new learning rate updater (#181 [https://github.com/open-mmlab/mmaction2/pull/181])

	Add config name in meta info (#183 [https://github.com/open-mmlab/mmaction2/pull/183])

	Remove git hash in __version__ (#189 [https://github.com/open-mmlab/mmaction2/pull/189])

	Check mmcv version (#189 [https://github.com/open-mmlab/mmaction2/pull/189])

	Update url with ‘https://download.openmmlab.com’ (#208 [https://github.com/open-mmlab/mmaction2/pull/208])

	Update Docker file to support PyTorch 1.6 and update install.md (#209 [https://github.com/open-mmlab/mmaction2/pull/209])

	Polish readsthedocs display (#217 [https://github.com/open-mmlab/mmaction2/pull/217], #229 [https://github.com/open-mmlab/mmaction2/pull/229])

Bug Fixes

	Fix the bug when using OpenCV to extract only RGB frames with original shape (#184 [https://github.com/open-mmlab/mmaction2/pull/187])

	Fix the bug of sthv2 num_classes from 339 to 174 (#174 [https://github.com/open-mmlab/mmaction2/pull/174], #207 [https://github.com/open-mmlab/mmaction2/pull/207])

v0.6.0 (2/9/2020)

Highlights

	Support TIN, CSN, SSN, NonLocal

	Support FP16 training

New Features

	Support NonLocal module and provide ckpt in TSM and I3D (#41 [https://github.com/open-mmlab/mmaction2/pull/41])

	Support SSN (#33 [https://github.com/open-mmlab/mmaction2/pull/33], #37 [https://github.com/open-mmlab/mmaction2/pull/37], #52 [https://github.com/open-mmlab/mmaction2/pull/52], #55 [https://github.com/open-mmlab/mmaction2/pull/55])

	Support CSN (#87 [https://github.com/open-mmlab/mmaction2/pull/87])

	Support TIN (#53 [https://github.com/open-mmlab/mmaction2/pull/53])

	Support HMDB51 dataset preparation (#60 [https://github.com/open-mmlab/mmaction2/pull/60])

	Support encoding videos from frames (#84 [https://github.com/open-mmlab/mmaction2/pull/84])

	Support FP16 training (#25 [https://github.com/open-mmlab/mmaction2/pull/25])

	Enhance demo by supporting rawframe inference (#59 [https://github.com/open-mmlab/mmaction2/pull/59]), output video/gif (#72 [https://github.com/open-mmlab/mmaction2/pull/72])

ModelZoo

	Update Slowfast modelzoo (#51 [https://github.com/open-mmlab/mmaction2/pull/51])

	Update TSN, TSM video checkpoints (#50 [https://github.com/open-mmlab/mmaction2/pull/50])

	Add data benchmark for TSN (#57 [https://github.com/open-mmlab/mmaction2/pull/57])

	Add data benchmark for SlowOnly (#77 [https://github.com/open-mmlab/mmaction2/pull/77])

	Add BSN/BMN performance results with feature extracted by our codebase (#99 [https://github.com/open-mmlab/mmaction2/pull/99])

Improvements

	Polish data preparation codes (#70 [https://github.com/open-mmlab/mmaction2/pull/70])

	Improve data preparation scripts (#58 [https://github.com/open-mmlab/mmaction2/pull/58])

	Improve unittest coverage and minor fix (#62 [https://github.com/open-mmlab/mmaction2/pull/62])

	Support PyTorch 1.6 in CI (#117 [https://github.com/open-mmlab/mmaction2/pull/117])

	Support with_offset for rawframe dataset (#48 [https://github.com/open-mmlab/mmaction2/pull/48])

	Support json annotation files (#119 [https://github.com/open-mmlab/mmaction2/pull/119])

	Support multi-class in TSMHead (#104 [https://github.com/open-mmlab/mmaction2/pull/104])

	Support using val_step() to validate data for each val workflow (#123 [https://github.com/open-mmlab/mmaction2/pull/123])

	Use xxInit() method to get total_frames and make total_frames a required key (#90 [https://github.com/open-mmlab/mmaction2/pull/90])

	Add paper introduction in model readme (#140 [https://github.com/open-mmlab/mmaction2/pull/140])

	Adjust the directory structure of tools/ and rename some scripts files (#142 [https://github.com/open-mmlab/mmaction2/pull/142])

Bug Fixes

	Fix configs for localization test (#67 [https://github.com/open-mmlab/mmaction2/pull/67])

	Fix configs of SlowOnly by fixing lr to 8 gpus (#136 [https://github.com/open-mmlab/mmaction2/pull/136])

	Fix the bug in analyze_log (#54 [https://github.com/open-mmlab/mmaction2/pull/54])

	Fix the bug of generating HMDB51 class index file (#69 [https://github.com/open-mmlab/mmaction2/pull/69])

	Fix the bug of using load_checkpoint() in ResNet (#93 [https://github.com/open-mmlab/mmaction2/pull/93])

	Fix the bug of --work-dir when using slurm training script (#110 [https://github.com/open-mmlab/mmaction2/pull/110])

	Correct the sthv1/sthv2 rawframes filelist generate command (#71 [https://github.com/open-mmlab/mmaction2/pull/71])

	CosineAnnealing typo (#47 [https://github.com/open-mmlab/mmaction2/pull/47])

v0.5.0 (9/7/2020)

Highlights

	MMAction2 is released

New Features

	Support various datasets: UCF101, Kinetics-400, Something-Something V1&V2, Moments in Time,
Multi-Moments in Time, THUMOS14

	Support various action recognition methods: TSN, TSM, R(2+1)D, I3D, SlowOnly, SlowFast, Non-local

	Support various action localization methods: BSN, BMN

	Colab demo for action recognition

 FAQ

FAQ

Outline

We list some common issues faced by many users and their corresponding solutions here.

	FAQ

	Outline

	Installation

	Data

	Training

	Testing

Feel free to enrich the list if you find any frequent issues and have ways to help others to solve them.
If the contents here do not cover your issue, please create an issue using the provided templates and make sure to fill in all required information in the template.

Installation

	“No module named ‘mmcv.ops’”; “No module named ‘mmcv._ext’”

	Uninstall existing mmcv in the environment using pip uninstall mmcv

	Install mmcv following the installation instruction [https://mmcv.readthedocs.io/en/2.x/get_started/installation.html#install-mmcv]

	“OSError: MoviePy Error: creation of None failed because of the following error”

Refer to install.md [https://github.com/open-mmlab/mmaction2/blob/master/docs/install.md#requirements]

	For Windows users, ImageMagick [https://www.imagemagick.org/script/index.php] will not be automatically detected by MoviePy, there is a need to modify moviepy/config_defaults.py file by providing the path to the ImageMagick binary called magick, like IMAGEMAGICK_BINARY = "C:\\Program Files\\ImageMagick_VERSION\\magick.exe"

	For Linux users, there is a need to modify the /etc/ImageMagick-6/policy.xml file by commenting out <policy domain="path" rights="none" pattern="@*" /> to <!-- <policy domain="path" rights="none" pattern="@*" /> -->, if ImageMagick is not detected by moviepy.

	“Why I got the error message ‘Please install XXCODEBASE to use XXX’ even if I have already installed XXCODEBASE?”

You got that error message because our project failed to import a function or a class from XXCODEBASE. You can try to run the corresponding line to see what happens. One possible reason is, for some codebases in OpenMMLAB, you need to install mmcv and mmengine before you install them. You could follow this tutorial [https://mmaction2.readthedocs.io/en/1.x/get_started.html#installation] to install them.

Data

	FileNotFound like No such file or directory: xxx/xxx/img_00300.jpg

In our repo, we set start_index=1 as default value for rawframe dataset, and start_index=0 as default value for video dataset.
If users encounter FileNotFound error for the first or last frame of the data, there is a need to check the files begin with offset 0 or 1,
that is xxx_00000.jpg or xxx_00001.jpg, and then change the start_index value of data pipeline in configs.

	How should we preprocess the videos in the dataset? Resizing them to a fix size(all videos with the same height-width ratio) like 340x256 (1) or resizing them so that the short edges of all videos are of the same length (256px or 320px) (2)

We have tried both preprocessing approaches and found (2) is a better solution in general, so we use (2) with short edge length 256px as the default preprocessing setting. We benchmarked these preprocessing approaches and you may find the results in TSN Data Benchmark [https://github.com/open-mmlab/mmaction2/tree/master/configs/recognition/tsn] and SlowOnly Data Benchmark [https://github.com/open-mmlab/mmaction2/tree/master/configs/recognition/slowonly].

	Mismatched data pipeline items lead to errors like KeyError: 'total_frames'

We have both pipeline for processing videos and frames.

For videos, We should decode them on the fly in the pipeline, so pairs like DecordInit & DecordDecode, OpenCVInit & OpenCVDecode, PyAVInit & PyAVDecode should be used for this case like this example [https://github.com/open-mmlab/mmaction2/blob/1.x/configs/recognition/tsn/tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py#L14-L16].

For Frames, the image has been decoded offline, so pipeline item RawFrameDecode should be used for this case like this example [https://github.com/open-mmlab/mmaction2/blob/1.x/configs/recognition/trn/trn_imagenet-pretrained-r50_8xb16-1x1x8-50e_sthv1-rgb.py#L17].

KeyError: 'total_frames' is caused by incorrectly using RawFrameDecode step for videos, since when the input is a video, it can not get the total_frames beforehand.

Training

	How to just use trained recognizer models for backbone pre-training?

In order to use the pre-trained model for the whole network, the new config adds the link of pre-trained models in the load_from.

And to use backbone for pre-training, you can change pretrained value in the backbone dict of config files to the checkpoint path / url.
When training, the unexpected keys will be ignored.

	How to fix stages of backbone when finetuning a model?

You can refer to def _freeze_stages() [https://github.com/open-mmlab/mmaction2/blob/1.x/mmaction/models/backbones/resnet3d.py#L791] and frozen_stages [https://github.com/open-mmlab/mmaction2/blob/1.x/mmaction/models/backbones/resnet3d.py#L369-L370].
Reminding to set find_unused_parameters = True in config files for distributed training or testing.

Actually, users can set frozen_stages to freeze stages in backbones except C3D model, since almost all backbones inheriting from ResNet and ResNet3D support the inner function _freeze_stages().

	How to set memcached setting in config files?

In MMAction2, you can pass memcached kwargs to class DecordInit for video dataset or RawFrameDecode for rawframes dataset.
For more details, you can refer to [class FileClient] in MMEngine for more details.
Here is an example to use memcached for rawframes dataset:

mc_cfg = dict(server_list_cfg='server_list_cfg', client_cfg='client_cfg', sys_path='sys_path')

train_pipeline = [
 ...
 dict(type='RawFrameDecode', io_backend='memcached', **mc_cfg),
 ...
]

	How to set load_from value in config files to finetune models?

In MMAction2, We set load_from=None as default in configs/_base_/default_runtime.py and owing to inheritance design,
users can directly change it by setting load_from in their configs.

Testing

	How to make predicted score normalized by softmax within [0, 1]?

change this in the config, make model.cls_head.average_clips = 'prob'.

	What if the model is too large and the GPU memory can not fit even only one testing sample?

By default, the 3d models are tested with 10clips x 3crops, which are 30 views in total. For extremely large models, the GPU memory can not fit even only one testing sample (cuz there are 30 views). To handle this, you can set max_testing_views=n in model['test_cfg'] of the config file. If so, n views will be used as a batch during forwarding to save GPU memory used.

 English

English

简体中文

 Index

Index

_static/minus.png

_static/plus.png

_static/file.png

_static/images/logo.png
\'l/| Action2

nav.xhtml

 Table of Contents

 		
 Welcome to MMAction2’s documentation!

 		
 Prerequisites

 		
 Installation

 		
 Best Practices

 		
 Install from source

 		
 Install as a Python package

 		
 Verify the installation

 		
 Customize Installation

 		
 CUDA versions

 		
 Install MMCV without MIM

 		
 Install on CPU-only platforms

 		
 Using MMAction2 with Docker

 		
 Tutorial 1: Learn about Configs

 		
 Modify config through script arguments

 		
 Config File Structure

 		
 Config File Naming Convention

 		
 Config System for Action Recognition

 		
 Config System for Spatio-Temporal Action Detection

 		
 Config System for Action localization

 		
 Tutorial 2: Prepare Datasets

 		
 Notes on Video Data Format

 		
 Getting Data

 		
 Prepare videos

 		
 Extract frames

 		
 Generate file list

 		
 Prepare audio

 		
 Tutorial 3: Inference with existing models

 		
 Inference on a given video

 		
 Tutorial 4: Training and Test

 		
 Training

 		
 Training with your PC

 		
 Training with multiple GPUs

 		
 Training with multiple machines

 		
 Test

 		
 Test with your PC

 		
 Test with multiple GPUs

 		
 Test with multiple machines

 		
 Other Useful Tools

 		
 Useful Tools Link

 		
 Model Conversion

 		
 Prepare a model for publishing

 		
 Miscellaneous

 		
 Evaluating a metric

 		
 Print the entire config

 		
 Check videos

 		
 Multi-Stream Fusion

 		
 Visualization Tools

 		
 Visualize dataset

 		
 Migration from MMAction2 0.x

 		
 New dependencies

 		
 Configuration files

 		
 Model settings

 		
 Data settings

 		
 Schedule settings

 		
 Runtime settings

 		
 Packages

 		
 mmaction.apis

 		
 mmaction.core

 		
 mmaction.datasets

 		
 mmaction.models

 		
 mmaction.utils

 		
 Other changes

 		
 Overview

 		
 Spatio Temporal Action Detection Models

 		
 Action Localization Models

 		
 Action Recognition Models

 		
 Skeleton-based Action Recognition Models

 		
 Action Recognition Models

 		
 C2D

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 C3D

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 CSN

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 I3D

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 MViT V2

 		
 Abstract

 		
 Results and Models

 		
 Test

 		
 Citation

 		
 Omnisource

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 R2plus1D

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 SlowFast

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 SlowOnly

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 VideoSwin

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 TANet

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 TimeSformer

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 TIN

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 TPN

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 TRN

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 TSM

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 TSN

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 UniFormer

 		
 Abstract

 		
 Results and Models

 		
 Test

 		
 Citation

 		
 UniFormerV2

 		
 Abstract

 		
 Results and Models

 		
 Test

 		
 Citation

 		
 VideoMAE

 		
 Abstract

 		
 Results and Models

 		
 Test

 		
 Citation

 		
 X3D

 		
 Abstract

 		
 Results and Models

 		
 Test

 		
 Citation

 		
 ResNet for Audio

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 Spatio Temporal Action Detection Models

 		
 ACRN

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 AVA

 		
 Abstract

 		
 Results and Models

 		
 Skeleton-based Action Recognition Models

 		
 AGCN

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 PoseC3D

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 STGCN

 		
 Abstract

 		
 Results and Models

 		
 Train

 		
 Test

 		
 Citation

 		
 STGCN++

 		
 Abstract

 		
 Results and M